111 research outputs found

    Controlling the elution order of insulin and its analogs in sub-/supercritical fluid chromatography using methanesulfonic acid and 18-crown-6 as mobile phase additives

    Get PDF
    The purity analysis of therapeutic peptides can often be challenging, demanding the application of more than a single analytical technique. Supercritical fluid chromatography nowadays is a promising alternative to reversed-phase liquid chromatography, providing orthogonal and complementary information. This study investigated its applicability for the separation of human insulin, its analogs and degradation products. A previously published method development protocol for peptides up to 2000 Da was successfully applied to the higher molecular weight insulins (6 kDa). A single gradient method was optimized for all insulins using a Torus DEA column (100 × 3.0 mm, 1.7 μm), carbon dioxide and a modifier consisting of methanol/acetonitrile/water/methanesulfonic acid (65:35:2:0.1, v/v/v/v). Consecutively, the crown ether 18-crown-6, which is well known to complex charged lysine sidechains and other amino functionalities, was added to the modifier to evaluate its impact on selectivity. A decreased retention and a shift in the elution order for the insulins were observed. An inverse effect on retention was found when combined with a neutral stationary phase chemistry (Viridis BEH)

    Ternary eluent compositions in supercritical fluid chromatography improved fingerprinting of therapeutic peptides

    Get PDF
    Currently, little information has been published on the application of ternary eluent compositions in supercritical fluid chromatography for separating peptides. This work investigates the benefits of adding acetonitrile to methanol as the modifier. Three cyclic antibiotic peptides (bacitracin, colistin, and daptomycin) ranging between 1000 and 2000 Da were chosen as model substances. The ternary mixture of carbon dioxide, methanol, and acetonitrile is optimized to increase the resolution of the peptide's fingerprint. In addition, varying compositions of methanol and acetonitrile were found to change the elution order of the analytes, which is a valuable tool during method development. An individual gradient method using two Torus 2-PIC columns (each 100 × 3.0 mm, 1.7 μm), carbon dioxide, and a modifier consisting of acetonitrile/methanol/water/methanesulfonic acid (60:40:2:0.1, v:v:v:v) was optimized for each of the peptides. Subsequently, a generic method development protocol applicable to polypeptides is proposed

    Risk assessment for nitrosated pharmaceuticals: A future perspective in drug development

    Get PDF
    Since June 2018, thousands of drug products from around the world had to be recalled due to the unexpected presence of nitrosamines (NAs). Starting with the pharmaceutical group of sartans, antidiabetic drugs, antihistamines, and antibiotics also became the subject of investigation. The occurrence of NAs has shown that pharmaceutical companies and regulatory agencies did not focus on these substances in the past during drug development. In this study, we incorporated a nitrosation assay procedure into high-resolution supercritical fluid chromatography (SFC)–mass spectrometry screening to test the potential of direct nitrosation of active pharmaceutical ingredients (APIs). The forced degradation study was performed with a four-fold molar excess of sodium nitrite, relative to the drug substance, at pH 3–4 for 4 h at 37°C. Chromatographic separation was performed on a porous graphitic carbon column by SFC. The mass analysis then focused on direct N-nitrosation or N-nitroso compounds (NOCs) formed after dealkylation. Substances (n = 67) from various pharmaceutical classes were evaluated and 49.3% of them formed NOCs, of which 21.2% have not yet been reported in the literature. In addition, for two APIs, which are known to form an unidentified NOC, the structure could be identified. A few substances also showed multiple NOCs and even N,N’-dinitroso-species. As NAs are carcinogens, they have to be eliminated or at least limited to prevent cancer in patients, who rely on these drugs. This study contributes a procedure that can be implemented in preapproval drug development and postapproval risk assessment to prevent unexpected findings in the future

    Prevalence of nitrosamine contaminants in drug samples: Has the crisis been overcome?

    Get PDF
    Various drug samples (N = 249; drug substances, tablets, capsules, solutions, crèmes, and more) from the European pharmaceutical market were collected since 2019 and analyzed for 16 nitrosamines (NAs). In 2.0% of the cases, NAs were detected. These findings included four active pharmaceutical ingredients already known for potential NA contamination: losartan (N-nitrosodimethylamine [NDMA] and N-nitrosodiethylamine, simultaneously), valsartan (NDMA), metformin (NDMA) and ranitidine (NDMA). The fifth new finding, which has not been reported yet, discovered contamination of a molsidomine tablet sample with N-nitrosomorpholine (NMor). The tablet contained 144% of the toxicological allowable intake for NMor. NMor was included in our screening from the beginning and is currently the focus of regulatory authorities, but was added to the guidelines only last year. Thus, it may not have been the focus of regulatory investigations for too long. Our results indicate that the majority of drug products in the market are nonhazardous in terms of patient safety and drug purity. Unfortunately, the list of individual affected products keeps growing constantly and new NA cases, such as molsidomine or nitrosated drug substances (nitrosamine drug substance-related impurities [NDSRI]), continue to emerge. We therefore expect nitrosamine screenings to remain a high priority

    Concentrations of Antidepressants, Antipsychotics, and Benzodiazepines in Hair Samples from Postmortem Cases

    Get PDF
    Certain postmortem case constellations require intensive investigation of the pattern of drug use over a long period before death. Hair analysis of illicit drugs has been investigated intensively over past decades, but there is a lack of comprehensive data on hair concentrations for antidepressants, antipsychotics, and benzodiazepines. This study aimed to obtain data for these substances. A LC-MS/MS method was developed and validated for detection of 52 antidepressants, antipsychotics, benzodiazepines, and metabolites in hair. Hair samples from 442 postmortem cases at the Institute of Legal Medicine of the Charité-University Medicine Berlin were analyzed. Postmortem hair concentrations of 49 analytes were obtained in 420 of the cases. Hair sample segmentation was possible in 258 cases, and the segments were compared to see if the concentrations decreased or increased. Descriptive statistical data are presented for the segmented and non-segmented cases combined (n = 420) and only the segmented cases (n = 258). An overview of published data for the target substances in hair is given. Metabolite/parent drug ratios were investigated for 10 metabolite/parent drug pairs. Cases were identified that had positive findings in hair, blood, urine, and organ tissue. The comprehensive data on postmortem hair concentrations for antidepressants, antipsychotics, and benzodiazepines may help other investigators in their casework. Postmortem hair analysis results provide valuable information on the drug intake history before death. Pattern changes can indicate if drug intake stopped or increased before death. Results should be interpreted carefully and preferably include segmental analysis and metabolite/parent drug ratios to exclude possible contamination

    Discontinuities of the exchange-correlation kernel and charge-transfer excitations in time-dependent density functional theory

    Full text link
    We identify the key property that the exchange-correlation (XC) kernel of time-dependent density functional theory must have in order to describe long-range charge-transfer excitations. We show that the discontinuity of the XC potential as a function of particle number induces a space -and frequency-dependent discontinuity of the XC kernel which diverges as rr\to\infty. In a combined donor-acceptor system, the same discontinuity compensates for the vanishing overlap between the acceptor and donor orbitals, thereby yielding a finite correction to the Kohn-Sham eigenvalue differences. This mechanism is illustrated to first order in the Coulomb interaction.Comment: 6 pages, 3 figures (expanded version, accepted in Phys. Rev. A

    Automated Real-Time Tumor Pharmacokinetic Profiling in 3D Models: A Novel Approach for Personalized Medicine

    Get PDF
    Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue

    Acute Effects of Single Versus Combined Inhaled β2-Agonists Salbutamol and Formoterol on Time Trial Performance, Lung Function, Metabolic and Endocrine Variables

    Get PDF
    Background High prevalence rates of β2-agonist use among athletes in competitive sports makes it tempting to speculate that illegitimate use of β2-agonists boosts performance. However, data regarding the potential performance-enhancing effects of inhaled β2-agonists and its underlying molecular basis are scarce. Methods In total, 24 competitive endurance athletes (12f/12m) participated in a clinical double-blinded balanced four-way block cross-over trial to investigate single versus combined effects of β2-agonists salbutamol (SAL) and formoterol (FOR), to evaluate the potential performance enhancement of SAL (1200 µg, Cyclocaps, Pb Pharma GmbH), FOR (36 µg, Sandoz, HEXAL AG) and SAL + FOR (1200 µg + 36 µg) compared to placebo (PLA, Gelatine capsules containing lactose monohydrate, Pharmacy of the University Hospital Ulm). Measurements included skeletal muscle gene and protein expression, endocrine regulation, urinary/serum β2-agonist concentrations, cardiac markers, cardiopulmonary and lung function testing and the 10-min time trial (TT) performance on a bicycle ergometer as outcome variables. Blood and urine samples were collected pre-, post-, 3 h post- and 24 h post-TT. Results Mean power output during TT was not different between study arms. Treatment effects regarding lung function (p < 0.001), echocardiographic (left ventricular end-systolic volume p = 0.037; endocardial global longitudinal strain p < 0.001) and metabolic variables (e.g. NR4A2 and ATF3 pathway) were observed without any influence on performance. In female athletes, total serum β2-agonist concentrations for SAL and FOR were higher. Microarray muscle gene analysis showed a treatment effect for target genes in energy metabolism with strongest effect by SAL + FOR (NR4A2; p = 0.001). Of endocrine variables, follicle-stimulating hormone (3 h Post–Post-TT), luteinizing hormone (3 h Post–Pre-TT) and insulin (Post–Pre-TT) concentrations showed a treatment effect (all p < 0.05). Conclusions No endurance performance-enhancing effect for SAL, FOR or SAL + FOR within the permitted dosages compared to PLA was found despite an acute effect on lung and cardiac function as well as endocrine and metabolic variables in healthy participants. The impact of combined β2-agonists on performance and sex-specific thresholds on the molecular and cardiac level and their potential long-term performance enhancing or health effects have still to be determined. Trial registration: Registered at Eudra CT with the number: 2015-005598-19 (09.12.2015) and DRKS with number DRKS00010574 (16.11.2021, retrospectively registered)

    25-hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC)

    Get PDF
    The aim of the study was to investigate whether maternal mid-pregnancy 25-hydroxyvitamin D concentrations are associated with cord blood DNA methylation. DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip, and maternal plasma 25-hydroxyvitamin D was measured in 819 mothers/newborn pairs participating in the Norwegian Mother and Child Cohort (MoBa) and 597 mothers/newborn pairs participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Across 473,731CpG DNA methylation sites in cord blood DNA, none were strongly associated with maternal 25-hydroxyvitamin D after adjusting for multiple tests (false discovery rate (FDR) > 0.5; 473,731 tests). A meta-analysis of the results from both cohorts, using the Fisher method for combining p-values, also did not strengthen findings (FDR > 0.2). Further exploration of a set of CpG sites in the proximity of four a priori defined candidate genes (CYP24A1, CYP27B1, CYP27A1 and CYP2R1) did not result in any associations with FDR < 0.05 (56 tests). In this large genome wide assessment of the potential influence of maternal vitamin D status on DNA methylation, we did not find any convincing associations in 1416 newborns. If true associations do exist, their identification might require much larger consortium studies, expanded genomic coverage, investigation of alternative cell types or measurements of 25-hydroxyvitamin D at different gestational time points

    Polyglycerol-opioid conjugate produces analgesia devoid of side effects

    Get PDF
    Novel painkillers are urgently needed. The activation of opioid receptors in peripheral inflamed tissue can reduce pain without central adverse effects such as sedation, apnoea, or addiction. Here, we use an unprecedented strategy and report the synthesis and analgesic efficacy of the standard opioid morphine covalently attached to hyperbranched polyglycerol (PG-M) by a cleavable linker. With its high-molecular weight and hydrophilicity, this conjugate is designed to selectively release morphine in injured tissue and to prevent blood-brain barrier permeation. In contrast to conventional morphine, intravenous PG-M exclusively activated peripheral opioid receptors to produce analgesia in inflamed rat paws without major side effects such as sedation or constipation. Concentrations of morphine in the brain, blood, paw tissue, and in vitro confirmed the selective release of morphine in the inflamed milieu. Thus, PG-M may serve as prototype of a peripherally restricted opioid formulation designed to forego central and intestinal side effects
    corecore