1,132 research outputs found
Spin-lattice coupling in frustrated antiferromagnets
We review the mechanism of spin-lattice coupling in relieving the geometrical
frustration of pyrochlore antiferromagnets, in particular spinel oxides. The
tetrahedral unit, which is the building block of the pyrochlore lattice,
undergoes a spin-driven Jahn-Teller instability when lattice degrees of freedom
are coupled to the antiferromagnetism. By restricting our considerations to
distortions which preserve the translational symmetries of the lattice, we
present a general theory of the collective spin-Jahn-Teller effect in the
pyrochlore lattice. One of the predicted lattice distortions breaks the
inversion symmetry and gives rise to a chiral pyrochlore lattice, in which
frustrated bonds form helices with a definite handedness. The chirality is
transferred to the spin system through spin-orbit coupling, resulting in a
long-period spiral state, as observed in spinel CdCr2O4. We discuss explicit
models of spin-lattice coupling using local phonon modes, and their
applications in other frustrated magnets.Comment: 23 pages, 6 figures. Lecture notes for Trieste Summer School, August
2007. To appear as a chapter in "Highly Frustrated Magnetism", Eds. C.
Lacroix, P. Mendels, F. Mil
Implementation of the Hierarchical Reference Theory for simple one-component fluids
Combining renormalization group theoretical ideas with the integral equation
approach to fluid structure and thermodynamics, the Hierarchical Reference
Theory is known to be successful even in the vicinity of the critical point and
for sub-critical temperatures. We here present a software package independent
of earlier programs for the application of this theory to simple fluids
composed of particles interacting via spherically symmetrical pair potentials,
restricting ourselves to hard sphere reference systems. Using the hard-core
Yukawa potential with z=1.8/sigma for illustration, we discuss our
implementation and the results it yields, paying special attention to the core
condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio
Adipokines and Redox Signaling: Impact on Fatty Liver Disease
Adipokines (adipose tissue cytokines) are polypeptide factors secreted by adipose tissue in a highly regulated manner. The 'classical' adipokines (leptin, adiponectin, and resistin) are expressed only by adipocytes, but other adipokines have been shown to be released by resident and infiltrating macrophages, as well as by components of the vascular stroma. Indeed, adipose tissue inflammation is known to be associated with a modification in the pattern of adipokine secretion. Several studies indicate that adipokines can interfere with hepatic injury associated with fatty infiltration, differentially modulating steatosis, inflammation, and fibrosis. Moreover, plasma levels of adipokines have been investigated in patients with nonalcoholic fatty liver disease in order to establish correlations with the underlying state of insulin resistance and with the type and severity of hepatic damage. In this Forum article, we provide a review of recent data that suggest a significant role for oxidative stress, reactive oxygen species, and redox signaling in mediating actions of adipokines that are relevant in the pathogenesis of nonalcoholic fatty liver disease, including hepatic insulin resistance, inflammation, and fibrosis
Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group
The Hierarchical Reference Theory (HRT) of fluids is a general framework for
the description of phase transitions in microscopic models of classical and
quantum statistical physics. The foundations of HRT are briefly reviewed in a
self-consistent formulation which includes both the original sharp cut-off
procedure and the smooth cut-off implementation, which has been recently
investigated. The critical properties of HRT are summarized, together with the
behavior of the theory at first order phase transitions. However, the emphasis
of this presentation is on the close relationship between HRT and non
perturbative renormalization group methods, as well as on recent
generalizations of HRT to microscopic models of interest in soft matter and
quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic
Assessing the performance of XDP and AF-XDP based NFs in edge data center scenarios
While servers in traditional data centers can be specialized to run either CPU-intensive or network-intensive workloads, edge data centers need to consolidate both on the same machine(s) due to the reduced number of servers.
This paper presents some preliminary experiments to determine how to improve the overall throughput of the above servers, being XDP and AF_XDP the two main technologies into play
Lattice effects on the spin dynamics in antiferromagnetic molecular rings
We investigate spin dynamics in antiferromagnetic (AF) molecular rings at
finite temperature in the presence of spin-phonon (s-p) interaction. We derive
a general expression for the spin susceptibility in the weak s-p coupling limit
and then we focus on the low-frequency behavior, in order to discuss a possible
microscopic mechanism for nuclear relaxation in this class of magnetic
materials. To lowest order in a perturbative expansion, we find that the
susceptibility takes a Lorentzian profile and all spin operators (, ) contribute to spin dynamics at wave vectors . Spin anisotropies
and local s-p coupling play a key role in the proposed mechanism. Our results
prove that small changes in the spatial symmetry of the ring induce qualitative
changes in the spin dynamics at the nuclear frequency, providing a novel
mechanism for nuclear relaxation. Possible experiments are proposed.Comment: 4 pages, 2 figures. to appear in PR
Providing Telco-oriented Network Services with eBPF: The Case for a 5G Mobile Gateway
Although several technologies exist for high-speed data plane processing, such as DPDK, the above technologies require a rigid partitioning of the resources of the system, such as dedicated CPU cores and network interfaces. Unfortunately, this is not always possible when running at the edge of the network, in which a few servers are available in each cluster and a mixture of data and control plane services must coexist on the same hardware. In this respect, eBPF can become a better alternative thanks to its integration in the vanilla Linux kernel, which enables contemporary support for data and control plane services, hence enabling a more efficient usage of the (scarce) computing resources. This paper proposes the first proof-of-concept open-source implementation of a 5G Mobile Gateway based on eBPF/XDP, highlighting the possible challenges (e.g., to create traffic policers, as buffering is not available in eBPF) and the resulting architecture. The result is characterized in terms of performance and scalability and compared with alternative technologies, showing that it outperforms other in-kernel solutions (e.g., Open vSwitch) and is comparable with DPDK-based platforms
A proof-of-concept 5G mobile gateway with eBPF
In this poster we propose the first proof-of-concept open-source implementation of a 5G Mobile Gateway based on eBPF/XDP and present benchmarks that compare its performance with alternative technologies.
We show how it outperforms other in-kernel solutions (e.g., OvS) and is comparable with DPDK-based platforms
Spin-liquid and magnetic phases in the anisotropic triangular lattice: the case of -(ET)X
The two-dimensional Hubbard model on the anisotropic triangular lattice, with
two different hopping amplitudes and , is relevant to describe
the low-energy physics of -(ET)X, a family of organic salts. The
ground-state properties of this model are studied by using Monte Carlo
techniques, on the basis of a recent definition of backflow correlations for
strongly-correlated lattice systems. The results show that there is no magnetic
order for reasonably large values of the electron-electron interaction and
frustrating ratio , suitable to describe the non-magnetic
compound with X=Cu(CN). On the contrary, N\'eel order takes place for
weaker frustrations, i.e., , suitable for
materials with X=Cu(SCN), Cu[N(CN)]Cl, or Cu[N(CN)]Br.Comment: 7 pages, Physical Review B 80, 064419 (2009
- …