832 research outputs found

    Thermodynamics of Bose-Condensed Atomic Hydrogen

    Full text link
    We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-Pritchard potential. Such a trapping potential, that models the magnetic trap used in recent experiments with hydrogen, is anharmonic and strongly anisotropic. We calculate the ground-state properties, the condensed and non-condensed fraction and the Bose-Einstein transition temperature. The thermodynamics of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam.Comment: 11 pages, 4 figures, to be published in European Physical Journal

    Thermodynamics of a trapped Bose condensate with negative scattering length

    Full text link
    We study the Bose-Einstein condensation (BEC) for a system of 7Li^7Li atoms, which have negative scattering length (attractive interaction), confined in a harmonic potential. Within the Bogoliubov and Popov approximations, we numerically calculate the density profile for both condensate and non-condensate fractions and the spectrum of elementary excitations. In particular, we analyze the temperature and number-of-boson dependence of these quantities and evaluate the BEC transition temperature TBECT_{BEC}. We calculate the loss rate for inelastic two- and three-body collisions. We find that the total loss rate is strongly dependent on the density profile of the condensate, but this density profile does not appreciably change by increasing the thermal fraction. Moreover, we study, using the quasi-classical Popov approximation, the temperature dependence of the critical number NcN_c of condensed bosons, for which there is the collapse of the condensate. There are different regimes as a function of the total number NN of atoms. For N<NcN<N_c the condensate is always metastable but for N>NcN>N_c the condensate is metastable only for temperatures that exceed a critical value TcT_c.Comment: RevTex, 7 postscript figures, to be published in Journal of Low Temperature Phsyic

    Exact Renormalization Group : A New Method for Blocking the Action

    Full text link
    We consider the exact renormalization group for a non-canonical scalar field theory in which the field is coupled to the external source in a special non linear way. The Wilsonian action and the average effective action are then simply related by a Legendre transformation up to a trivial quadratic form. An exact mapping between canonical and non-canonical theories is obtained as well as the relations between their flows. An application to the theory of liquids is sketched

    Modulational Instability and Complex Dynamics of Confined Matter-Wave Solitons

    Full text link
    We study the formation of bright solitons in a Bose-Einstein condensate of 7^7Li atoms induced by a sudden change in the sign of the scattering length from positive to negative, as reported in a recent experiment (Nature {\bf 417}, 150 (2002)). The numerical simulations are performed by using the 3D Gross-Pitaevskii equation (GPE) with a dissipative three-body term. We show that a number of bright solitons is produced and this can be interpreted in terms of the modulational instability of the time-dependent macroscopic wave function of the Bose condensate. In particular, we derive a simple formula for the number of solitons that is in good agreement with the numerical results of 3D GPE. By investigating the long time evolution of the soliton train solving the 1D GPE with three-body dissipation we find that adjacent solitons repel each other due to their phase difference. In addition, we find that during the motion of the soliton train in an axial harmonic potential the number of solitonic peaks changes in time and the density of individual peaks shows an intermittent behavior. Such a complex dynamics explains the ``missing solitons'' frequently found in the experiment.Comment: to be published in Phys. Rev. Let

    Properties of derivative expansion approximations to the renormalization group

    Get PDF
    Approximation only by derivative (or more generally momentum) expansions, combined with reparametrization invariance, turns the continuous renormalization group for quantum field theory into a set of partial differential equations which at fixed points become non-linear eigenvalue equations for the anomalous scaling dimension η\eta. We review how these equations provide a powerful and robust means of discovering and approximating non-perturbative continuum limits. Gauge fields are briefly discussed. Particular emphasis is placed on the r\^ole of reparametrization invariance, and the convergence of the derivative expansion is addressed.Comment: (Minor touch ups of the lingo.) Invited talk at RG96, Dubna, Russia; 14 pages including 2 eps figures; uses LaTeX, epsf and sprocl.st

    Thermodynamics of Multi-Component Fermi Vapors

    Full text link
    We study the thermodynamical properties of Fermi vapors confined in a harmonic external potential. In the case of the ideal Fermi gas, we compare exact density profiles with their semiclassical approximation in the conditions of recent experiments. Then, we consider the phase-separation of a multi-component Fermi vapor. In particular, we analyze the phase-separation as a function of temperature, number of particles and scattering length. Finally, we discuss the effect of rotation on the stability and thermodynamics of the trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a Special Issue Articl

    Quantum Monte Carlo diagonalization for many-fermion systems

    Full text link
    In this study we present an optimization method based on the quantum Monte Carlo diagonalization for many-fermion systems. Using the Hubbard-Stratonovich transformation, employed to decompose the interactions in terms of auxiliary fields, we expand the true ground-state wave function. The ground-state wave function is written as a linear combination of the basis wave functions. The Hamiltonian is diagonalized to obtain the lowest energy state, using the variational principle within the selected subspace of the basis functions. This method is free from the difficulty known as the negative sign problem. We can optimize a wave function using two procedures. The first procedure is to increase the number of basis functions. The second improves each basis function through the operators, e−ΔτHe^{-\Delta\tau H}, using the Hubbard-Stratonovich decomposition. We present an algorithm for the Quantum Monte Carlo diagonalization method using a genetic algorithm and the renormalization method. We compute the ground-state energy and correlation functions of small clusters to compare with available data

    Role of backflow correlations for the non-magnetic phase of the t-t' Hubbard model

    Get PDF
    We introduce an efficient way to improve the accuracy of projected wave functions, widely used to study the two-dimensional Hubbard model. Taking the clue from the backflow contribution, whose relevance has been emphasized for various interacting systems on the continuum, we consider many-body correlations to construct a suitable approximation for the ground state at intermediate and strong couplings. In particular, we study the phase diagram of the frustrated t−t′t{-}t^\prime Hubbard model on the square lattice and show that, thanks to backflow correlations, an insulating and non-magnetic phase can be stabilized at strong coupling and sufficiently large frustrating ratio t′/tt^\prime/t.Comment: 5 pages, 4 figure

    Timing accuracy of the Swift X-Ray Telescope in WT mode

    Full text link
    The X-Ray Telescope (XRT) on board Swift was mainly designed to provide detailed position, timing and spectroscopic information on Gamma-Ray Burst (GRB) afterglows. During the mission lifetime the fraction of observing time allocated to other types of source has been steadily increased. In this paper, we report on the results of the in-flight calibration of the timing capabilities of the XRT in Windowed Timing read-out mode. We use observations of the Crab pulsar to evaluate the accuracy of the pulse period determination by comparing the values obtained by the XRT timing analysis with the values derived from radio monitoring. We also check the absolute time reconstruction measuring the phase position of the main peak in the Crab profile and comparing it both with the value reported in literature and with the result that we obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We find that the accuracy in period determination for the Crab pulsar is of the order of a few picoseconds for the observation with the largest data time span. The absolute time reconstruction, measured using the position of the Crab main peak, shows that the main peak anticipates the phase of the position reported in literature for RXTE by ~270 microseconds on average (~150 microseconds when data are reduced with the attitude file corrected with the UVOT data). The analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array (PCA) observations confirms that the XRT Crab profile leads the PCA profile by ~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data shows a main peak position in good agreement with the RXTE, suggesting the discrepancy observed in XRT data in Windowed Timing mode is likely due to a systematic offset in the time assignment for this XRT read out mode.Comment: 6 pages, 4 figures. Accepted for publication on Astronomy&Astrophysic

    Effective chiral-spin Hamiltonian for odd-numbered coupled Heisenberg chains

    Full text link
    An L×∞L \times \infty system of odd number of coupled Heisenberg spin chains is studied using a degenerate perturbation theory, where LL is the number of coupled chains. An effective chain Hamiltonian is derived explicitly in terms of two spin half degrees of freedom of a closed chain of LL sites, valid in the regime the inter-chain coupling is stronger than the intra-chain coupling. The spin gap has been calculated numerically using the effective Hamiltonian for L=3,5,7,9L=3,5,7,9 for a finite chain up to ten sites. It is suggested that the ground state of the effective Hamiltonian is correlated, by examining variational states for the effective chiral-spin chain Hamiltonian.Comment: 9 Pages, Latex, report ICTP-94-28
    • …
    corecore