4,180 research outputs found

    Band Gap Formation and Tunability in Stretchable Serpentine Interconnects

    Get PDF
    Serpentine interconnects are highly stretchable and frequently used in flexible electronic systems. In this work, we show that the undulating geometry of the serpentine interconnects will generate phononic band gaps to manipulate elastic wave propagation. The interesting effect of `bands-sticking-together' is observed. We further illustrate that the band structures of the serpentine interconnects can be tuned by applying pre-stretch deformation. The discovery offers a way to design stretchable and tunable phononic crystals by using metallic interconnects instead of the conventional design with soft rubbers and unfavorable damping.Comment: 12 pages, 8 figure

    Hyperelastic antiplane ground cloaking

    Full text link
    Hyperelastic materials possess the appealing property that they may be employed as elastic wave manipulation devices and cloaks by imposing pre-deformation. They provide an alternative to microstructured metamaterials and can be used in a reconfigurable manner. Previous studies indicate that exact elastodynamic invariance to pre-deformation holds only for neo-Hookean solids in the antiplane wave scenario and the semi-linear material in the in-plane compressional/shear wave context. Furthermore, although ground cloaks have been considered in the acoustic context they have not yet been discussed for elastodynamics, either by employing microstructured cloaks or hyperelastic cloaks. This work therefore aims at exploring the possibility of employing a range of hyperelastic materials for use as antiplane ground cloaks (AGCs). The use of the popular incompressible Arruda-Boyce and Mooney-Rivlin nonlinear materials is explored. The scattering problem associated with the AGC is simulated via finite element analysis where the cloaked region is formed by an indentation of the surface. Results demonstrate that the neo-Hookean medium can be used to generate a perfect hyperelastic AGC as should be expected. Furthermore, although the AGC performance of the Mooney-Rivlin material is not particularly satisfactory, it is shown that the Arruda-Boyce medium is an excellent candidate material for this purpose

    Nonlinear pre-stress for cloaking from antiplane elastic waves

    Full text link
    A theory is presented showing that cloaking of objects from antiplane elastic waves can be achieved by elastic pre-stress of a neo-Hookean nonlinear elastic material. This approach would appear to eliminate the requirement of metamaterials with inhomogeneous anisotropic shear moduli and density. Waves in the pre-stressed medium are bent around the cloaked region by inducing inhomogeneous stress fields via pre-stress. The equation governing antiplane waves in the pre-stressed medium is equivalent to the antiplane equation in an unstressed medium with inhomogeneous and anisotropic shear modulus and isotropic scalar mass density. Note however that these properties are induced naturally by the pre-stress. Since the magnitude of pre-stress can be altered at will, this enables objects of varying size and shape to be cloaked by placing them inside the fluid-filled deformed cavity region.Comment: 21 pages, 4 figure

    The Hill and Eshelby tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics

    Full text link
    In 1957 Eshelby showed that a homogeneous isotropic ellipsoidal inhomogeneity embedded in a homogeneous isotropic host would feel uniform strains and stresses when uniform strains or stresses are applied in the far-field. Of specific importance is the uniformity of Eshelby's tensor S. Following this paper a vast literature has been generated using and developing Eshelby's result and ideas, leading to some beautiful mathematics and extremely useful results in a wide range of application areas. In 1961 Eshelby conjectured that for anisotropic materials only ellipsoidal inhomogeneities would lead to such uniform interior fields. Although much progress has been made since then, the quest to prove this conjecture is still not complete; numerous important problems remain open. Following a different approach to that considered by Eshelby, a closely related tensor P=S D^0 arises, where D^0 is the host medium compliance tensor. The tensor P is associated with Hill and is of course also uniform when ellipsoidal inhomogeneities are embedded in a homogeneous host phase. Two of the most fundamental and useful areas of applications of these tensors are in Newtonian potential problems such as heat conduction, electrostatics, etc. and in the vector problems of elastostatics. Micromechanical methods established mainly over the last half-century have enabled bounds on and predictions of the effective properties of composite media. In many cases such predictions can be explicitly written down in terms of the Hill, or equivalently the Eshelby tensor and can be shown to provide excellent predictions in many cases. Here this classical problem is revisited and a large number of results for problems that are felt to be of great utility in a wide range of disciplines are derived or recalled

    Sampling methane in basalt on Earth and Mars

    Get PDF
    Peer reviewedPublisher PD

    Cadmium sulfide in a Mesoproterozoic terrestrial environment

    Get PDF
    Peer reviewedPostprin

    Compression properties of polymeric syntactic foam composites under cyclic loading

    Full text link
    Syntactic foams are composite materials frequently used in applications requiring the properties of low density and high damage tolerance. In the present work, polymer-based syntactic foams were studied under cyclic compression in order to investigate their compressibility, recoverability, energy dissipation and damage tolerance. These syntactic foams were manufactured by adding hollow polymer microspheres of various sizes and wall thicknesses into a polyurethane matrix. The associated loading and unloading curves during cyclic testing were recorded, revealing the viscoelastic nature of the materials. SEM images of the samples were obtained in order to study potential damage mechanisms during compression. It was observed that these syntactic foams exhibit high elastic recovery and energy dissipation over a wide range of compressional strains and the addition of polymer microspheres mitigate the damage under compressional loading.Comment: 25 pages, 13 figure

    Enhancement of Xe-129 polarization by off-resonant spin exchange optical pumping

    Get PDF
    A high power narrow line width (38 W, 0.09 nm full width at half maximum) external cavity diode laser is investigated for rubidium spin exchange optical pumping of Xe-129. This tunable photon source has a constant line width, independent of operating power or wavelength within a 1 nm tuning range. When using this laser, an increase in the Xe-129 nuclear polarization is observed when optically pumping at a lower wavelength than the measured Rb electron D-1 absorption. The exact detuning from D1 for the highest polarization is dependent upon the gas density. Furthermore, at high power and/or high Rb density, a reduction in the polarization occurs at the optimum wavelength as previously reported in spin exchange optical pumping studies of He-3 which is consistent with high absorption close to the cell front face. These results are encouraging for moderate high throughput polarization of Xe-129 in the midpressure range of (0.5-2.0 amagat). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3478707
    corecore