21 research outputs found

    Beating Darwin-Bragg losses in lab-based ultrafast X-ray experiments

    Get PDF
    The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this wor

    SDR, EVC, and SDREVC: Limitations and Extensions

    Full text link
    Methods for reducing the radius, temperature, and space charge of nonneutral plasma are usually reported for conditions which approximate an ideal Penning Malmberg trap. Here we show that (1) similar methods are still effective under surprisingly adverse circumstances: we perform SDR and SDREVC in a strong magnetic mirror field using only 3 out of 4 rotating wall petals. In addition, we demonstrate (2) an alternative to SDREVC, using e-kick instead of EVC and (3) an upper limit for how much plasma can be cooled to T < 20 K using EVC. This limit depends on the space charge, not on the number of particles or the plasma density.Comment: Version 2: a small discrepancy between the N values for Table 1 and Fig. 3 led to an investigation of the charge counting diagnostic. There is a small energy dependence which only became apparent following improvements to pre-SDREVC. The pulsed dump was modified to reduce this dependence. The data for Table 1 and Fig. 3 was taken again with the improved method

    Upgrade of the positron system of the ASACUSA-Cusp experiment

    Full text link
    The ASACUSA-Cusp collaboration has recently upgraded the positron system to improve the production of antihydrogen. Previously, the experiment suffered from contamination of the vacuum in the antihydrogen production trap due to the transfer of positrons from the high pressure region of a buffer gas trap. This contamination reduced the lifetime of antiprotons. By adding a new positron accumulator and therefore decreasing the number of transfer cycles, the contamination of the vacuum has been reduced. Further to this, a new rare gas moderator and buffer gas trap, previously used at the Aarhus University, were installed. Measurements from Aarhus suggested that the number of positrons could be increased by a factor of four in comparison to the old system used at CERN. This would mean a reduction of the time needed for accumulating a sufficient number of positrons (of the order of a few million) for an antihydrogen production cycle. Initial tests have shown that the new system yields a comparable number of positrons to the old system.Comment: 10 pages, 5 figures, under consideration for the Special Collection "Non-Neutral Plasmas: Achievements and Perspectives" in JP

    SDR, EVC, and SDREVC: Limitations and Extensions

    Get PDF
    Methods for reducing the radius, temperature and space charge of a non-neutral plasma are usually reported for conditions which approximate an ideal Penning Malmberg trap. Here, we show that (i) similar methods are still effective under surprisingly adverse circumstances: we perform strong drive regime (SDR) compression and SDREVC in a strong magnetic mirror field using only 3 out of 4 rotating wall petals. In addition, we demonstrate (ii) an alternative to SDREVC, using e-kick instead of evaporative cooling (EVC) and (iii) an upper limit for how much plasma can be cooled to T &lt; 20 K using EVC. This limit depends on the space charge, not on the number of particles or the plasma density

    Slow positron production and storage for the ASACUSA-Cusp experiment

    Get PDF
    The ASACUSA (atomic spectroscopy and collisions using slow antiprotons) Cusp experiment requires the production of dense positron plasmas with a high repetition rate to produce a beam of antihydrogen. In this work, details of the positron production apparatus used for the first observation of the antihydrogen beam, and subsequent measurements, are described in detail. This apparatus replaced the previous compact trap design resulting in an improvement in the positron accumulation rate by a factor of 52 +/- 3

    Slow positron production and storage for the ASACUSA-Cusp experiment

    Full text link
    The ASACUSA Cusp experiment requires the production of dense positron plasmas with a high repetition rate to produce a beam of antihydrogen. In this work, details of the positron production apparatus used for the first observation of the antihydrogen beam, and subsequent measurements are described in detail. This apparatus replaced the previous compact trap design resulting in an improvement in positron accumulation by a factor of (52±3)52\pm3)Comment: 9 pages, 7 figure

    Laser spectroscopy of indium Rydberg atom bunches by electric field ionization

    No full text
    This work reports on the application of a novel electric field-ionization setup for high-resolution laser spectroscopy measurements on bunched fast atomic beams in a collinear geometry. In combination with multi-step resonant excitation to Rydberg states using pulsed lasers, the field ionization technique demonstrates increased sensitivity for isotope separation and measurement of atomic parameters over previous non-resonant laser ionization methods. The setup was tested at the Collinear Resonance Ionization Spectroscopy experiment at ISOLDE-CERN to perform high-resolution measurements of transitions in the indium atom from the [Formula: see text] and [Formula: see text] states to [Formula: see text]p [Formula: see text]P and [Formula: see text]F Rydberg states, up to a principal quantum number of [Formula: see text]. The extracted Rydberg level energies were used to re-evaluate the ionization potential of the indium atom to be [Formula: see text]. The nuclear magnetic dipole and nuclear electric quadrupole hyperfine structure constants and level isotope shifts of the [Formula: see text] and [Formula: see text] states were determined for [Formula: see text]In. The results are compared to calculations using relativistic coupled-cluster theory. A good agreement is found with the ionization potential and isotope shifts, while disagreement of hyperfine structure constants indicates an increased importance of electron correlations in these excited atomic states. With the aim of further increasing the detection sensitivity for measurements on exotic isotopes, a systematic study of the field-ionization arrangement implemented in the work was performed at the same time and an improved design was simulated and is presented. The improved design offers increased background suppression independent of the distance from field ionization to ion detection.status: publishe

    Analytic response relativistic coupled-cluster theory: the first application to indium isotope shifts

    No full text
    © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster (CC) theory framework to determine the atomic field shift and mass shift (MS) factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic CC theory has been applied to determine MS and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of 104-127 In were performed in the 246.8 nm (5p 2P3/2 → 9s 2S1/2) and 246.0 nm (5p 2P1/2 → 8s 2S1/2) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the 104-127 In isotopes, providing an isotone-independent comparison of the absolute charge radii
    corecore