527 research outputs found

    Aerodynamic protection for space flight vehicles Patent

    Get PDF
    Development and characteristics of protective coatings for spacecraf

    Passive Orbital Disconnect Strut (PODS 3) structural test program

    Get PDF
    A passive orbital disconnect strut (PODS-3) was analyzed structurally and thermally. Development tests on a graphite/epoxy orbit tube and S glass epoxy launch tube provided the needed data to finalize the design. A detailed assembly procedure was prepared. One strut was fabricated. Shorting loads in both the axial and lateral direction (vs. load angle and location) were measured. The strut was taken to design limit loads at both ambient and 78 K (cold end only). One million fatigue cycles were performed at predicted STS loads (half in tension, half in compression) with the cold end at 78 K. The fatigue test was repeated at design limit loads. Six struts were then fabricated and tested as a system. Axial loads, side loads, and simulated asymmetric loads due to temperature gradients around the vacuum shell were applied. Shorting loads were measured for all tests

    Feasibility study for long lifetime helium dewar

    Get PDF
    A feasible concept for a launchable three year lifetime helium dewar was investigted. Current helium dewar designs were examined to see where the largest potential reductions in parasitic heat loads can be made. The study was also devoted to examining support concepts. The support concept chosen, a passive orbital disconnect strut (PODS), has an orbital support conductance that is lower by more than an order of magnitude over current tension band supports. This lower support conductance cuts the total dewar weight in half for the same three year life time requirements. Effort was also concentrated on efficient wire feed through designs and vapor cooling of the multilayer insulation, supports, wire feed throughs and plumbing penetrations. A single stage helium dewar vs. dual stage dewars with a guard cryogen of nitrogen or neon was examined. The single stage dewar concept was selected. Different support concepts were analyzed from which the PODS support concepts was chosen. A preliminary design of the dewar was thermally and structurally analyzed and laid out including system weights, thermal performance and performance sensitivities

    Passive Orbital Disconnect Strut (PODS 3), structural and thermal test program

    Get PDF
    A test program is undertaken to verify that the lifetime of a shuttle launchable dewar can be increased by using passive orbital disconnect struts (PODS). A detailed design is performed on the cold end (PODS-III) portion of the strut. Structural analysis of the thin-wall fiberglass tube allows selection of the optimum winding angle and tube dimensions. Structural tests on the thin-wall fiberglass tube measure both the tension and compression modulus at ambient and LN2 temperatures, the radial deflection versus side load, and the ultimate compression strength of the tube at LN2 temperature. The thermal expansion of the fiberglass tube plus Invar is also measured down to 78 K. The axial gap at the wedge portion of the stem is set based on these data. The PODS-III test article parts are fabricated and assembled using a detailed assembly procedure. The thermal conductants in the orbital configuration was measured for body temperatures between 5 and 40 K. This temperature range covers the predicted ground hold and orbit temperatures for vapor-cooled supports. The test results are then compared with heat leak values predicted before the test began. Side load, axial compression load, and tension load tests conclude the test program

    Test and evaluate passive orbital disconnect struts (PODS 3)

    Get PDF
    The objectives of the Passive Orbital Disconnect Struts (PODS) test are to evaluate modal resonance of the PODS-III supports to obtain engineering data required for use of PODS-III on flight systems; determine possible performance improvements in large LO2/LH2 space applications. (1) Modal Vibration Tests. A modal resonance survey is performed on a set of six PODS-III struts assembled in a dewar simulator. The survey conditions simulate both launch and orbital loadings of the struts. The orbital load range spans a full to an empty tank. The frequencies surveyed cover the range consistent with Shuttle qualification requirements and the principal resonant modes of the strut system. (2) Benefit study. The benefit of using PODS-III supports on OTV and Space Station LO sub 2 and LH sub 2 reference tanks was compared to nondisconnect supports. Four LO sub 2 and LH sub 2 tanks were studied under various conditions: (1) holding the launch resonance at 35 Hz and varying the orbit resonance; (2) analyzing both full and emtpy tanks at launch; (3) varying orbit boundary temperaure; (4) varying the number of struts; (5) varying orbit times; and (6) using or not using vapor cooling

    Evacuated load-bearing high performance insulation study

    Get PDF
    A light weight, vacuum jacketed, load bearing cryogenic insulation system was developed and tested on a 1.17-m (46-in.) spherical test tank. The vacuum jacket consists of 0.08 mm (0.003 in.) thick 321 stainless steel formed into a wedge design that allows elastic jacket movements as the tank shrinks (cools) or expands (warms up or is pressurized). Hollow glass spheres, approximately 80 micrometers in diameter with a bulk density of 0.069 g/cc (4.3 lb cubic foot), provide the insulating qualities and one atmosphere load bearing capability required. The design, fabrication, and test effort developed the manufacturing methods and engineering data needed to scale the system to other tank sizes, shapes, and applications. The program demonstrated that thin wall jackets can be formed and welded to maintain the required vacuum level of .013 Pa yet flex elastically for multiple reuses. No significant shifting or breakage of the microspheres occurred after 13 simulated Space Tug flight cycles on the test tank and a hundred 1 atmosphere load cycles in a flat plate calorimeter. The test data were then scaled to the Space Tug LO2 and LH2 tanks, and weight, thermal performance, payload performance, and costs were compared with a helium purged multilayer insulation system

    Assessment of crash fire hazard of LH sub 2 fueled aircraft

    Get PDF
    The relative safety of passengers in LH2 - fueled aircraft, as well as the safety of people in areas surrounding a crash scene, has been evaluated in an analytical study. Four representative circumstances were postulated involving a transport aircraft in which varying degrees of severity of damage were sustained. Potential hazard to the passengers and to the surroundings posed by the spilled fuel was evaluated for each circumstance. Corresponding aircraft fueled with liquid methane, Jet A, and JP-4 were also studied in order to make comparisons of the relative safety. The four scenarios which were used to provide a basis for the evaluation included: (1) a small fuel leak internal to the aircraft, (2) a survivable crash in which a significant quantity of fuel is spilled in a radial pattern as a result of impact with a stationary object while taxiing at fairly low speed, (3) a survivable crash in which a significant quantity of fuel is spilled in an axial pattern as a result of impact during landing, and (4) a non-survivable crash in which a massive fuel spill occurs instantaneously

    Effects of environmental exposure on cryogenic thermal insulation materials

    Get PDF
    Investigation was made to optimize selection of insulation materials for reusable space vehicles which will be repeatedly operated over periods of up to ten years. Results of study are summarized in two reports. Volume I describes tests and significant findings. In Volume II, extensive test data obtained are organized in handbook form

    SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) Study

    Get PDF
    The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 to 700 micrometers. SIRTF is currently under study by NASA-ARC (Reference AP) and planned for launch in approximately the mid 1990s. SIRTF will operate as a multiuser facility, initially carrying three instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and baseline is currently to be 2 years. The telescope changes required to allow in-space replenishment of the 4,000-L superfluid helium tank was investigated. A preliminary design for the space services equipment was also developed. The impacts of basing the equipment and servicing on the space station were investigated. Space replenishment and changeout of instruments required changes to the telescope design. Preliminary concepts are presented

    Immunohistochemical Demonstration of IgG in Reed-Sternberg and Other Cells in Hodgkin\u27s Disease

    Get PDF
    Increased synthesis of IgG in vitro has been demonstrated in spleens from patients with Hodgkin\u27s disease, either with or without invasion of the organ by tumor (1). Interest in this laboratory has centered recently on cytochemical localization of immunoglobulins by means of an immunoglobulin-peroxidase bridge procedure (2) and a satisfactory method has been developed for selectively visualizing immunocytes with this technique. 1 As a means of assessing the basis for increased IgG biosynthesis in spleens of Hodgkin patients, this immunostaining procedure has been applied to localization of IgG-producing cells in specimens with Hodgkin\u27s disease
    • …
    corecore