35 research outputs found

    Pursuing Cardiac Progenitors: Regeneration Redux

    Get PDF
    Recent studies have questioned the accepted dogma that the regenerative capacity of the heart following injury is limited. Several apparently distinct populations of resident cardiac progenitor cells may have the potential to regenerate functional heart muscle. Despite this progress, the physiologic role and therapeutic potential of cardiac resident progenitor cells remain unclear

    Prior Authorization Requirements for Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors Across US Private and Public Payers

    Get PDF
    A comprehensive review of prior authorization (PA) requirements for a new class of expensive cholesterol-lowering drugs known as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors has found unusually complex and burdensome demands across public and private insurance plans in the United States. These findings raise concerns that current policies may create undue barriers to care even in medically appropriate patients, particularly since requirements were just as stringent for patients with a genetic condition that creates more clear-cut eligibility for PCSK9 inhibitor treatment

    Protein synthesis and degradation during regression of thyroxine-induced cardiac hypertrophy

    Full text link
    To characterize changes in rates of protein turnover during regression of thyroxine-induced left ventricular hypertrophy, New Zealand White rabbits received intravenous thyroxine (200 [mu]g/kg/d) for 9 days. Thyroxine was withheld, and in vivo protein turnover was evaluated on the 10th, 15th and 20th days. Animals not receiving thyroxine served as controls. Heart rate, blood pressure, and rate-pressure product were measured to correlate changes in cardiac work with protein turnover rates during the development and regression of hypertrophy. Thyroxine administration produced left ventricular hypertrophy by increasing the rate of protein synthesis (from 37.9 +/- 8.9 to 64.1 +/- 15.3 mg/day; P P < 0.05). Cessation of thyroxine administration resulted in an eventual return of left ventricular mass to that of normally growing control animals. The major observation noted during thyroxine withdrawal was a return of protein synthetic rates to normal. Absolute rates of protein degradation remained elevated, whereas fractional protein degradative rates (i.e. the fraction of total protein degraded per day) were unchanged by the administration and withdrawal of thyroxine. These results indicate that suppression of both physiological and hormone-induced growth following cessation of thyroxine resulted from a decrease in cardiac protein synthetic rates and an increased rate of flux through the protein degradative pathway(s), while fractional rates of protein degradation (and thus average protein half-life) remained unchanged. The development and regression of thyroxine-induced hypertrophy correlated with thyroxine-mediated alterations in cardiac work.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27795/1/0000195.pd

    Direct gene transfer into cardiac myocytes in vivo

    Full text link
    Recent studies have demonstrated that cardiac and skeletal myocytes share the ability to take up and stably express plasmid DNA injected directly into myocardium or skeletal muscle in vivo. Although this is a relatively inefficient process, with less than 1% of the myocytes expressing the injected recombinant DNA, expression in these cells is stable for periods of at least 6 months. The majority of the injected DNA is maintained in myocytes as an episome and apparently does not undergo DNA replication. The direct DNA injection approach has been used to map cardiac-specific transcriptional regulatory elements in cellular promoter/enhancers. Expression of recombinant proteins in the heart following direct DNA injection also holds promise for the treatment of a variety of acquired and inherited cardiovascular diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29917/1/0000274.pd

    Impaired Notch Signaling Promotes \u3cem\u3eDe novo\u3c/em\u3e Squamous Cell Carcinoma Formation

    Get PDF
    Signaling through Notch receptors in the skin has been implicated in the differentiation, proliferation, and survival of keratinocytes, as well as in the pathogenesis of basal cell carcinoma (BCC). To determine the composite function of Notch receptor–mediated signaling in the skin and overcome potential redundancies between receptors, conditional transgenic mice were generated that express the pan-Notch inhibitor, dominant-negative Mastermind Like 1 (DNMAML1), to repress all canonical [CBF-1/Suppressor of hairless/LAG-1 (CSL)–dependent] Notch signaling exclusively in the epidermis. Here, we report that DNMAML1 mice display hyperplastic epidermis and spontaneously develop cutaneous squamous cell carcinoma (SCC) as well as dysplastic precursor lesions, actinic keratoses. Mice expressing epidermal DNMAML1 display enhanced accumulation of nuclear ß-catenin and cyclin D1 in suprabasilar keratinocytes and in lesional cells from SCCs, which was also observed in human cutaneous SCC. These results suggest a model wherein CSL-dependent Notch signaling confers protection against cutaneous SCC. The demonstration that inhibition of canonical Notch signaling in mice leads to spontaneous formation of SCC and recapitulates the disease in humans yields fundamental insights into the pathogenesis of SCC and provides a unique in vivo animal model to examine the pathobiology of cutaneous SCC and for evaluating novel therapies

    Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells

    Get PDF
    AbstractThe formation of the primitive endoderm covering the inner cell mass of early mouse embryos can be simulated in vitro by the differentiation of mouse embryonic stem (ES) cells in culture following either aggregation of suspended cells or stimulation of cell monolayers with retinoic acid. The developmentally regulated transcription factors GATA-4 and GATA-6 have determining role in mouse extraembryonic endoderm development. We analyzed the in vitro differentiation of mouse embryonic stem cells deficient of GATA factors and conclude that GATA-4 is required for ES cells to perceive a cell positioning (cell aggregation) signal and GATA-6 is required to sense morphogenic (retinoic acid) signal. The collaboration between GATA-6 and GATA-4, or GATA-6 and GATA-5 which can substitute for GATA-4, is involved in the perception of differentiation cues by embryonic stem cells in their determination of endoderm lineage. This study indicates that the lineage differentiation of ES cells can be manipulated by the expression of GATA factors

    Cardiac troponins: from myocardial infarction to chronic disease.

    Get PDF
    Elucidation of the physiologically distinct subunits of troponin in 1973 greatly facilitated our understanding of cardiac contraction. Although troponins are expressed in both skeletal and cardiac muscle, there are isoforms of troponin I/T expressed selectively in the heart. By exploiting cardiac-restricted epitopes within these proteins, one of the most successful diagnostic tests to-date has been developed: cardiac troponin (cTn) assays. For the past decade, cTn has been regarded as the gold-standard marker for acute myocardial necrosis: the pathological hallmark of acute myocardial infarction (AMI). Whilst cTn is the cornerstone for ruling-out AMI in patients presenting with a suspected acute coronary syndrome (ACS), elevated cTn is frequently observed in those without clinical signs indicative of AMI, often reflecting myocardial injury of 'unknown origin'. cTn is commonly elevated in acute non-ACS conditions, as well as in chronic diseases. It is unclear why these elevations occur; yet they cannot be ignored as cTn levels in chronically unwell patients are directly correlated to prognosis. Paradoxically, improvements in assay sensitivity have meant more differential diagnoses have to be considered due to decreased specificity, since cTn is now more easily detected in these non-ACS conditions. It is important to be aware cTn is highly specific for myocardial injury, which could be attributable to a myriad of underlying causes, emphasising the notion that cTn is an organ-specific, not disease-specific biomarker. Furthermore, the ability to detect increased cTn using high-sensitivity assays following extreme exercise is disconcerting. It has been suggested troponin release can occur without cardiomyocyte necrosis, contradicting conventional dogma, emphasising a need to understand the mechanisms of such release. This review discusses basic troponin biology, the physiology behind its detection in serum, its use in the diagnosis of AMI, and some key concepts and experimental evidence as to why cTn can be elevated in chronic diseases
    corecore