173 research outputs found

    Superconducting pairing of interacting electrons: implications from the two-impurity Anderson model

    Full text link
    We study the non-local superconducting pairing of two interacting Anderson impurities, which has an instability near the quantum critical point from the competition between the Kondo effect and an antiferromagnetic inter-impurity spin exchange interaction. As revealed by the dynamics over the whole energy range, the superconducting pairing fluctuations acquire considerable strength from an energy scale much higher than the characteristic spin fluctuation scale while the low energy behaviors follow those of the staggered spin susceptibility. We argue that the glue to the superconducting pairing is not the spin fluctuations, but rather the effective Coulomb interaction. On the other hand, critical spin fluctuations in the vicinity of quantum criticality are also crucial to a superconducting pairing instability, by preventing a Fermi liquid fixed point being reached to keep the superconducting pairing fluctuations finite at low energies. A superconducting order, to reduce the accumulated entropy carried by the critical degrees of freedom, may arise favorably from this instability.Comment: 6 pages, 2 figure

    Prospects and applications near ferroelectric quantum phase transitions : a key issues review

    Get PDF
    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this Key Issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.PostprintPeer reviewe

    An automated Raman-based platform for the sorting of live cells by functional properties

    Get PDF
    Stable-isotope probing is widely used to study the function of microbial taxa in their natural environment, but sorting of isotopically labelled microbial cells from complex samples for subsequent genomic analysis or cultivation is still in its early infancy. Here, we introduce an optofluidic platform for automated sorting of stable-isotope-probing-labelled microbial cells, combining microfluidics, optical tweezing and Raman microspectroscopy, which yields live cells suitable for subsequent single-cell genomics, mini-metagenomics or cultivation. We describe the design and optimization of this Raman-activated cell-sorting approach, illustrate its operation with four model bacteria (two intestinal, one soil and one marine) and demonstrate its high sorting accuracy (98.3 ± 1.7%), throughput (200-500 cells h-1; 3.3-8.3 cells min-1) and compatibility with cultivation. Application of this sorting approach for the metagenomic characterization of bacteria involved in mucin degradation in the mouse colon revealed a diverse consortium of bacteria, including several members of the underexplored family Muribaculaceae, highlighting both the complexity of this niche and the potential of Raman-activated cell sorting for identifying key players in targeted processes.</p

    PPS, a Large Multidomain Protein, Functions with Sex-Lethal to Regulate Alternative Splicing in Drosophila

    Get PDF
    Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting with core spliceosomal proteins, including the U1 snRNP protein Sans-fille (SNF). In studies begun by screening for proteins that interact with SNF, we identified PPS, a previously uncharacterized protein, as a novel component of the machinery required for Sxl male exon skipping. PPS encodes a large protein with four signature motifs, PHD, BRK, TFS2M, and SPOC, typically found in proteins involved in transcription. We demonstrate that PPS has a direct role in Sxl male exon skipping by showing first that loss of function mutations have phenotypes indicative of Sxl misregulation and second that the PPS protein forms a complex with SXL and the unspliced Sxl RNA. In addition, we mapped the recruitment of PPS, SXL, and SNF along the Sxl gene using chromatin immunoprecipitation (ChIP), which revealed that, like many other splicing factors, these proteins bind their RNA targets while in close proximity to the DNA. Interestingly, while SNF and SXL are specifically recruited to their predicted binding sites, PPS has a distinct pattern of accumulation along the Sxl gene, associating with a region that includes, but is not limited to, the SxlPm promoter. Together, these data indicate that PPS is different from other splicing factors involved in male-exon skipping and suggest, for the first time, a functional link between transcription and SXL–mediated alternative splicing. Loss of zygotic PPS function, however, is lethal to both sexes, indicating that its role may be of broad significance

    Executive Function and Falls in Older Adults: New Findings from a Five-Year Prospective Study Link Fall Risk to Cognition

    Get PDF
    Background: Recent findings suggest that executive function (EF) plays a critical role in the regulation of gait in older adults, especially under complex and challenging conditions, and that EF deficits may, therefore, contribute to fall risk. The objective of this study was to evaluate if reduced EF is a risk factor for future falls over the course of 5 years of follow-up. Secondary objectives were to assess whether single and dual task walking abilities, an alternative window into EF, were associated with fall risk. Methodology/Main Results We longitudinally followed 256 community-living older adults (age: 76.4±4.5 yrs; 61% women) who were dementia free and had good mobility upon entrance into the study. At baseline, a computerized cognitive battery generated an index of EF, attention, a closely related construct, and other cognitive domains. Gait was assessed during single and dual task conditions. Falls data were collected prospectively using monthly calendars. Negative binomial regression quantified risk ratios (RR). After adjusting for age, gender and the number of falls in the year prior to the study, only the EF index (RR: .85; CI: .74–.98, p = .021), the attention index (RR: .84; CI: .75–.94, p = .002) and dual tasking gait variability (RR: 1.11; CI: 1.01–1.23; p = .027) were associated with future fall risk. Other cognitive function measures were not related to falls. Survival analyses indicated that subjects with the lowest EF scores were more likely to fall sooner and more likely to experience multiple falls during the 66 months of follow-up (p<0.02). Conclusions/Significance: These findings demonstrate that among community-living older adults, the risk of future falls was predicted by performance on EF and attention tests conducted 5 years earlier. The present results link falls among older adults to cognition, indicating that screening EF will likely enhance fall risk assessment, and that treatment of EF may reduce fall risk

    An RGS-Containing Sorting Nexin Controls Drosophila Lifespan

    Get PDF
    The pursuit of eternal youth has existed for centuries and recent data indicate that fat-storing tissues control lifespan. In a D. melanogaster fat body insertional mutagenic enhancer trap screen designed to isolate genes that control longevity, we identified a regulator of G protein signaling (RGS) domain containing sorting nexin, termed snazarus (sorting nexin lazarus, snz). Flies with insertions into the 5′ UTR of snz live up to twice as long as controls. Transgenic expression of UAS-Snz from the snz Gal4 enhancer trap insertion, active in fat metabolic tissues, rescued lifespan extension. Further, the lifespan extension of snz mutants was independent of endosymbiont, e.g., Wolbachia, effects. Notably, old snz mutant flies remain active and fertile indicating that snz mutants have prolonged youthfulness, a goal of aging research. Since mammals have snz-related genes, it is possible that the functions of the snz family may be conserved to humans

    Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548

    Get PDF
    In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity–delay maps for the prominent broad emission lines (Lyα, C iv, He ii, and Hβ) in the spectrum of NGC 5548. These are the most detailed velocity–delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5–10 lt-day has a broad single-peaked velocity profile. The Lyα, C iv, and Hβ responses extend from inside 2 to outside 20 lt-day, with double peaks at ±2500 km s−1 in the 10–20 lt-day delay range. An incomplete ellipse in the velocity–delay plane is evident in Hβ. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay τ=(R/c)(1sini)5\tau =(R/c)(1-\sin i)\approx 5 days gives the inclination i ≈ 45°. The inferred black hole mass is MBH ≈ 7 × 107 M⊙. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C iv and Lyα line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out

    A cancer geography paradox?:Poorer cancer outcomes with longer travelling times to healthcare facilities despite prompter diagnosis and treatment: a data-linkage study

    Get PDF
    This study was funded by Cancer Research UK (Grant number = C10673/A17593). The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review or approval of the manuscript; or the decision to submit the manuscript for publication. All authors are independent of Cancer Research UK.Peer reviewedPublisher PD
    corecore