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Abstract. The emergence of complex and fascinating states of quantum matter in

the neighborhood of zero temperature phase transitions suggests that such quantum

phenomena should be studied in a variety of settings. Advanced technologies of the

future may be fabricated from materials where the cooperative behavior of charge, spin

and current can be manipulated at cryogenic temperatures. The progagating lattice

dynamics of displacive ferroelectrics make them appealing for the study of quantum

critical phenomena that is characterized by both space- and time-dependent quantities.

In this Key Issues article we aim to provide a self-contained overview of ferroelectrics

near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum

critical point can be tuned experimentally to reside at, above or below its upper

critical dimension; this feature allows for detailed interplay between experiment and

theory using both scaling and self-consistent field models. Empirically the sensitivity

of the ferroelectric Tc’s to external and to chemical pressure gives practical access to

a broad range of temperature behavior over several hundreds of Kelvin. Additional

degrees of freedom like charge and spin can be added and characterized systematically.

Satellite memories, electrocaloric cooling and low-loss phased-array radar are among

possible applications of low-temperature ferroelectrics. We end with open questions

for future research that include textured polarization states and unusual forms of

superconductivity that remain to be understood theoretically.
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1. Introduction and FAQs

At first sight, the links between ferroelectrics, quantum phase transitions and quantum

criticality may not be obvious. After all, ferroelectrics are mostly non-metallic materials

that are often studied towards specific functionalities at room temperature, whereas a

key motivation for research in quantum phase transitions and quantum criticality is

their links with novel metallic behavior and exotic superconductivity. Our principal

aim in this Key Issues article is to encourage more communication between researchers

in these two mainly independent communities. Let us begin by addressing frequently

asked questions that might be posed by curious newcomers to the field in a colloquial

fashion before presenting more detail in the subsequent parts of this article.

********************************

Aren’t quantum fluctuations only important at T = 0 Kelvin ?

Let’s start by discussing what is meant by quantum fluctuations. We can begin

by thinking about the amplitude fluctuations of a one-dimensional simple harmonic

oscillator as a function of temperature, and let’s take a look at Figure 1 together. Here

we see that, setting the constants ~ and kB to be unity, the important energy-scales are

the temperature, T , and the oscillator frequency Ω. If T is much greater than Ω, then

the variance in the amplitude, 〈x2〉, scales with T and Ω drops out completely. In this

case, the total variance results from purely classical (thermal) fluctuations and in Figure

1 their contribution to 〈x2〉 is indicated by a red line. However for lower temperatures,

particularly in the interval 0 < T . Ω, there is another contribution to 〈x2〉 above this

classical red line (see Figure 1) due to quantum fluctuations (blue line in Figure 1).
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The total variance then becomes the sum of the quantum and the classical components,

where at T = 0 only the quantum component survives.

Figure 1. Amplitude variance of a simple harmonic oscillator where Ω and K
are its frequency and stiffness respectively.

Fine, but what does this behavior of one simple harmonic oscillator have to

do with quantum phase transitions?

We are just getting to this conceptual connection. Order parameter fluctuations play a

key role at phase transitions, and we can consider the variance of each of their Fourier

components one at a time. We can call each of these Fourier components a mode of

wavevector q whose behavior could be mapped onto that of single harmonic oscillator

of amplitude x where Ω would be the oscillator frequency of the mode in question.

Now we are back to our Figure 1 where the full variance 〈x2〉 is plotted as a function of

temperature for a particular mode of wavevector q. At a continuous phase transition the

(mode) stiffness K vanishes for modes with wavevectors close to the ordering wavevector,

so that the red and blue lines in Figure 1 becomes vertical and the amplitude fluctuations

diverge. If this occurs at a temperature T � Ω, then the transition may be driven

by essentially classical fluctuations and is between high to low entropy states as a

function of decreasing temperature. However at low temperatures where 0 < T . Ω,

we have classical-plus-quantum (C+Q) fluctuations and here we are very interested

in how these “hybrid” fluctuations lead to behavior and ordering distinct from those

driven by their purely classical counterparts. Again K at the ordering wavevector goes
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to zero at the transition but now, in addition to the classical contribution, there is a

quantum component to 〈x2〉. Of course at strictly T = 0 the fluctuations are purely

quantum and the entropy change is zero for an equilibrium system. Therefore purely

(equilibrium) quantum phase transitions are really transformations from one type of

ordering to another. We emphasize this point because the term “quantum disordered

state”, that often appears in phase diagrams, is ambiguous and possibly confusing; it

may only have useful meaning in cases where there is a finite ground-state degeneracy

in violation of the Third Law of thermodynamics.

Here you are telling us that quantum fluctuations increase amplitude

fluctuations at low temperatures. However Einstein and later Debye showed

that quantum fluctuations reduced the specific heat from its classical value

and that was a big success for the quantum theory. How does this fit in with

what you are saying?

Figure 2. Heat capacity of diamond vs. temperature. Note that at room

temperature it is well below the classical Dulong-Petit value, indicating the

importance of quantum effects at non-cryogenic temperatures. Adapted from

Hofman [1] with permission and thanks to P. Hofman.

You are of course completely correct that at low temperatures the specific heat of a

solid is reduced compared to its classical constant value, and indeed this may seem

counterintuitive given what we’ve just told you. However we can in fact understand this

behavior by looking again at Figure 1. In our simple approach the energy is proportional

to the variance of amplitude fluctuations, so the specific heat is then its derivative. We
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see that the slope of the variance in the amplitude (〈x2〉) is higher at temperatures

T >> Ω than at T << Ω, and indeed it is actually relatively flat in the approach to

zero-temperature. This means that the specific heat will be significantly lower at low

temperatures compared to its constant value at temperatures T >> Ω and we hope

this answers the question. In Figure 2 you see the specific heat cP of diamond that has

a Debye temperature exceeding one thousand degrees (Kelvin); at room temperature

cP is already temperature-dependent and thus the effects of quantum fluctuations are

observable without any fancy cryogenics!

As you suggest, the heat capacity is valuable in bringing out the dramatic quantum

corrections to classical behavior that can extend to room temperatures and above.

However it is also important to note that the heat capacity does not reflect the total

variance and depends only on the Bose function contribution; of course we are neglecting

any temperature-dependence of Ω which would require a more extended discussion.

So then why do we care about the total variance anyway if it isn’t important

for observable quantities?

We agree that this is not obvious from our specific heat discussion. As we can see in

Figure 1, the total variance has both classical and quantum components, where their

relative contributions change as a function of temperature. Just as the classical part

drives phase transitions for T � Ω, it is the quantum part that drives phase transitions

for T � Ω. We should add that the total variance of the amplitude fluctuations can

be probed, for example, by neutron scattering experiments where the neutron loses

energy to the system so that both the zero-point and the Bose function contributions are

measured. Again we stress that it is the total variance that is crucial for the “disruption”

of the initial form of order.

What does quantum criticality mean?

In a nutshell, quantum criticality refers to a second-order phase transition that

occurs at zero temperature. More generally, it’s probably easiest to answer your

question by comparing quantum criticality to its classical counterpart. At a continuous

phase transition the inverse order parameter susceptibility vanishes so that the order

parameter correlation function becomes scale-invariant. This means that it decays with

distance and time not exponentially but rather gradually in a power-law form. The

thermodynamic variables depend only on scale-invariant correlation functions in space

for classical criticality, but crucially on both space and time for quantum criticality.

This leads to new critical exponents that are quantum in nature depending on details

of the order parameter dynamics.

In ferroelectrics classical criticality is difficult to observe in practice. Why

isn’t the same true for quantum criticality?

As you suggest, the criteria for observing classical and quantum criticality are quite
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different. For example classical criticality just below Tc is defined as the region near

a finite temperature phase transition where fluctuations in the order parameter are

comparable to the average of the order parameter itself. Empirically it has been found

that mean-field theory works very well near classical ferroelectric phase transitions,

though of course most are first-order. Actually many ferroelectrics reside close to

tricritical points at ambient pressure. Therefore it’s not surprising that pressure-tuned

ferroelectric transitions are continuous, at least in practice. More generally, continuous

ferroelectric quantum phase transitions are expected if one is willing to tune not only

pressure or composition but also the electric field. As an aside, we should also note that

textured states are known to reside near first-order quantum phase transitions, so they

can be very interesting too.

What defines the quantum critical region?

It’s important to realize that temperature is not a simple tuning parameter at a

quantum phase transition. Indeed temperature provides the low-energy cutoff for

quantum fluctuations where the associated time-scale is defined through the Heisenberg

uncertainty relation ∆t ∼ ~
kBT

. In this sense temperature plays the role of a finite-size

effect in time at a quantum critical point. The quantum critical region is defined by

the interplay between the scale-invariant order parameter fluctuations and the temporal

boundary conditions imposed by finite temperature; most importantly it is accessible

experimentally with distinct observable signatures.

Now can you please explain why d+ 1 is the effective dimension?

In the case of purely classical fluctuations, the amplitude for each mode of wavevector q

depends only on the temperature and not on its dynamical properties, as we’ve already

noted. Therefore its statistical mechanical description involves only the d dimensions

of wavevector (or of real) space. However when quantum fluctuations are present, the

mode frequency as well as the temperature are important for the statistical mechanical

characterization; for example see the expression for the variance in Figure 1. In general

there is a distribution of frequencies ω associated with each mode that reduces to a

δ-function in the special case of a simple harmonic oscillator where ω = Ω. More

generally each mode has a power spectrum distribution of frequencies that results in

a statistical mechanical description involving not only the sum over wavevectors but

also over frequency ω. The effective number of dimensions to be associated with the

dynamics is dependent on the frequency-wavevector dispersion relation. If the dispersion

is linear, as it is for ferroelectrics, space and time enter the statistical description on

equal footing leading to an overall effective dimensionality of “d + 1” referring to d

space and 1 time dimensions. Another subtlety is that the effective time dimension is

of finite size except in the limit T → 0 as we’ve just discussed.

New functionalities are of great interest to the ferroelectrics community, so

are there useful low-temperature applications for these materials that could
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be pursued in parallel to studies of quantum criticality?

The trends for future devices are faster, lighter and smaller. Ferroelectric films are used

as both active and passive memory elements where data is stored as the presence (or

absence) of charge. Reduced operating temperatures lead to lower leakage currents and

to increased breakdown fields, both crucial for keeping competitive with faster access

and high-density needs.

Electrocaloric cooling, the change in temperature with applied electric field, could

be developed to access cryogenic temperatures just as its magnetic counterpart,

magnetocaloric cooling, is often used to access millikelvin temperatures and below.

There was some work exploring cryogenic electrocaloric cooling some time

ago that was not pursued as the observed effects were too small for

practical use...what has changed since then to make you optimistic about

this application?

In a nutshell, current thin-film and multicapacitor technologies means that we can

increase breakdown fields, particularly at low temperatures without loss of effective

volume. It is certainly much easier and cheaper to apply electric rather than magnetic

fields, and we’ll have more to say about electrocaloric cooling shortly.

We should also note that the radiation-hardness of ferroelectric memories makes them

ideal for satellite applications where there is repeated passage through the Van Allen

belts and naturally cold temperatures! Indeed in efforts to develop radiation-tolerant

electronics, NASA has performed on-orbit tests of ferroelectric random access memories,

FRAMs, on micro-satellites (see Figure 3). Furthermore NPSAT1, a small satellite built

by the Naval Postgraduate School with FRAMs on board, is due to launch on the SpaceX

Falcon Heavy sometime in 2017.

Another potential application for cryogenic ferroelectrics is in phased array radar that

would replace large, heavy radar antennae that mechanically rotate. Beam steering

would be achieved electrically by varying the phase of a voltage train with a field-tuned

LC circuit. In order for such array radar devices to be competitive with their mechanical

analogues the dielectric loss must be very low, about 0.01%, and thus this should be a

niche for cryogenic ferroelectrics. We should point out that the entire device would not

have to be at low temperatures...on-chip electrocaloric cooling for the capacitor could

do the job nicely!

So it sounds like there are several low-temperature applications for

ferroelectrics that can be explored. Now back to a more general

question. What from our knowledge of magnetism can be transferred to

ferroelectricity?

There are indeed similarities between ferroelectrics and ferromagnets, but there are

also key differences. For example, the polarization is a classical object and thus is not
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Figure 3. (Left) Artist’s rendition of NASA’s Fast and Affordable Science

and Technology Satellite (FASTSAT) with ferroelectric randon access memory

(FRAM) for radiation robustness reprinted from MacLeod et al. [2, 3] with

permission and thanks to T.C. MacLeod; (Inset) Naval Postgraduate School

scientists R. Panholzer and D. Sakoda with several structural pieces of Naval

Postgraduate School Satellite 1 with FRAM [4] due to launch on a STP-2

mission in 2017 on a SpaceX Falcon Heavy rocket [5] (US Navy Photo by

Javier Chagoya, reprinted from [4] with permission and thanks to J. Chagoya

and the NPS Public Affairs Office).

quantized in contrast to the spin in a magnet. Crystal fields lead to strong anisotropy

in ferroelectrics whereas magnetic anisotropy is usually orders of magnitude smaller and

is principally due to spin-orbit coupling; this leads to different domain structures in

these two distinct classes of materials. The dynamics in ferroelectrics are dominated by

propagating vibrational modes, whereas in magnets there is spin precession. These are

just some of the reasons one has to be careful going back and forth between magnetism

and ferroelectricity, and we’ll be discussing this in more detail shortly.

Most of our experiments in quantum criticality are on metallic systems and

most ferroelectrics are insulating. So where is the common ground?

We usually emphasize the fact that ferroelectrics are analogous to ferromagnetic

insulators. However in the present context, they have interesting features in common

with itinerant magnets. In a ferroelectric at high temperatures, the polarization is not

well-defined due to dynamical fluctuations in the separation between charges. Similarly

in an itinerant magnet, the magnetic moment is not well-defined at high temperatures

since the number of electrons in a unit cell is constantly fluctuating. So in that sense the

two are not that different. We should add that there also have been studies of doped

bulk strontium titanate that indicate very interesting metallic and superconducting
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behaviors. Indeed doped strontium titanate is the superconductor with one of the

lowest carrier densities known to date. Its Fermi temperature is lower than its Debye

temperature, a feature also seen in many heavy fermion superconductors. Thus it most

probably cannot be described by a conventional theory of superconductivity.

So, given our discussion, what can ferroelectricity bring to the study of

quantum criticality?

Empiricially the sensitivities of the ferroelectric transition temperatures to pressure are

remarkable! As an example, in order to cover 300 K changes in magnetic Tc’s, we

must usually apply hundreds of kilobars, whereas in ferroelectrics the same temperature

range can be achieved with more than a factor of ten less in pressure. Furthermore

the electric field as another tuning parameter offers tremendous advantages over its

magnetic counterpart, as an electric field is significantly easier to apply and doesn’t

require a lot of extra coils, special cells etc. Also, through gated control of carriers,

there is another type of continuous fine-tuning available without the need for multiple

samples at different doping levels. In the quantum regime, as we discussed earlier, a

system’s thermodynamic behavior involves both space and time and hence dynamics;

since the dynamics of ferroelectrics and ferromagnets are different, their quantum critical

behavior will also be distinct. More generally, another class of materials for experiment

is crucial as we collectively explore the possibility of universality in quantum critical

phenomena.

********************************

So we see, there is quite a lot to discuss! We note that there has been tremendous

“historical entanglement” here between the fields of ferroelectrics and criticality; the

first logarithmic corrections to mean-field exponents due to fluctuations at marginal

dimensionality were calculated for a uniaxial ferroelectric [6]. Similarly the transverse-

field Ising model, one of the simplest models demonstrating a quantum phase transition,

was first developed to describe a transition transition in the ferroelectric potassium

dihydrogen phosphate KH2PO4 (often denoted as KDP) [7]. Indeed historically there

have been several “waves” of interest in low-temperature paraelectrics that are not

completely chronologically distinct; here, in the interest of compactness, we refer the

interested reader to previous reviews to discuss these developments [8, 9]. In the 1950s,

perovskites like SrT iO3 and KTaO3 were of experimental interest since their dielectric

properties were so different from those of (ferroelectric) BaTiO3. Next, in the late

60s through the mid-80s, with the development of renormalization group, they were

settings to test lattice model calculations of quantum critical exponents and to study

the importance of long-range dipolar interactions in different dimensions. More recently

there has been tremendous interest in the interplay of polarization with other degrees of

freedom, so there has been much effort towards modelling phase diagrams of materials

for a wide range of temperatures with the aim of raising interesting low-temperature
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phases to room temperature for appropriate applications [10]. A closely related field

is that of ferroelastics, the mechanical analogue of ferroelectricity and ferromagnetism,

that is associated with shape memory effects [11].

In this article, we’d like to encourage yet another “wave” of interest in the low

temperature behavior of paraelectrics/ferroelectrics, one motivated by the quest to

discover new quantum states of matter near quantum phase transitions [12, 13, 14, 15].

Materials near their displacive ferroelectric quantum transitions are particularly elegant

examples of quantum criticality [16, 17, 18, 19, 20, 21, 22] with few degrees of freedom

and propagating dynamics that distinguish them from their magnetic counterparts.

Furthermore, as we’ll discuss, they are dimensionally tunable so they can be studied

experimentally and theoretically at, above and below their upper critical dimensions.

Additional degrees of freedom like spin and charge can be added and characterized

systematically in these materials, leading to rich phase behavior as yet mostly

unexplored.

Let’s not get ahead of ourselves. To ensure that everyone is roughly on the same

page, we aim for a self-contained article with many references. We apologize in advance

to any researchers whose work has been inadvertently overlooked, and we hope that our

bibliography will give the interested reader a good starting point to explore topics of

interest in more depth. We begin with “Quantum Criticality Basics” in Section II and

then continue in III to “Ferroelectrics Necessities.” Then (IV) we discuss the specific

case of the material SrT iO3 and its behavior at low temperatures. “A Flavor for Low

Temperature Applications” is the next section (V) and we end (VI) with several open

questions for future research.

2. Quantum Criticality Basics

Our aim here is to present key ideas of quantum criticality with minimal formalism to

those new to the field, using familiar concepts whenever possible; naturally we refer the

reader eager for more detail to a number of excellent reviews [12, 13, 14, 15, 23, 24, 25]

In particular our focus will be the temperature behavior of observable quantities near a

quantum critical point, eventually associated with ferroelectricity; this goal will guide

our discussion. We are all familiar with classical phase transitions where the order

parameter develops at a characteristic critical temperature. This standard picture

assumes purely classical (thermal) fluctuations which is certainly appropriate for the

temperatures of general interest. As we’ve just discussed in the Introduction, quantum

fluctuations also contribute to order parameter fluctuations of modes with characteristic

frequencies of the order of or greater than the temperature; here for presentational

simplicity we have set the constants ~ = kB = 1. However if, as T → 0, the fluctuation-

selection of different ground states is enhanced by another tuning parameter, g, then

there is the possibility of a T = 0 continous quantum phase transition.
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Let’s resume our previous discussion of order parameter fluctuations where we

treated each Fourier mode as a simple harmonic oscillator of amplitude x with frequency

Ω. The total variance in the mode amplitude is then

〈x2〉 =

{
nΩ +

1

2

}
Ω χ (1)

where nΩ refers to the Bose function and χ = 1
K (= Re χω=0) where K is the relevant

spring stiffness or elastic constant. We recall that for a simple harmonic oscillator

Im χω =
π

2
ω χ δ(ω − Ω) (ω > 0) (2)

so that we can rewrite (1) as

〈x2〉 =
2

π

∫ ∞
0

dω

{
nω +

1

2

}
Im χω. (3)

We note that this link between the variance of amplitude fluctuations and the imaginary

part of the response, here derived for a simple harmonic oscillator, is actually a much

more general result associated with the fluctuation-dissipation (Nyquist) theorem [26].

We can generalize (3) to a sum over all modes labelled by wavevector q, for example,

in the entire Brillouin zone. Let us now transition to the amplitude of the scalar order

parameter φ that here is a (dipole) moment density that can be either magnetic or

electric; we use this terminology for simplicity to avoid confusion with other common

symbols often associated with pressure. Then, following our previous argument, the

variance of the amplitude fluctuations of the moment is

〈δφ2〉 =
2

π

∑
q

∫ ∞
0

dω

{
nω +

1

2

}
Im χqω (4)

where φ = φ+ δφ, φ is the average, 〈δφ〉 = 0 and

Im χqω =
π

2
ω χq δ(ω − ωq) (ω > 0) (5)

in the propagating limit where ωq is the oscillator frequency of the mode of wavevector

q; naturally more general power spectra are also possible [27].

Equation (4) is composed of a strongly temperature-dependent contribution 〈δφ2
T 〉

involving the Bose factor nω; the remainder (〈δφ2
ZP 〉 involving the factor 1

2
instead of

nω) is due to “zero-point” fluctuations. Here we focus on 〈δφ2
T 〉 since it is dominant in

determining the temperature-dependence of the observable properties of interest here.

We note that the zero-point contribution mainly affects the T = 0 properties and as

noted previously can drive a quantum phase transition; in particular here it is assumed

just to renormalize the underlying parameters of the free energy-energy expansion in the

vicinity of the zero-temperature transition [26] that we’ll present shortly. Let us now

return to equation (4). At high temperatures (T >> ω), nω ≈ T
ω

; invoking causality in

the form of the Kramers-Kronig relations, we obtain a generalized equipartition theorem

[26]

〈δφ2
T 〉 ≈ T

∑
q<qBZ

χq (T >> ωq for q < qBZ). (6)
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Here we see that the dynamics drop out completely of the classical equilibrium

description. We also note that in (6) we have a d-dimensional wavevector summation

over the Brillouin zone that implies a d-dimensional theory in real space.

Figure 4. Important wavevectors and the dispersion ω ∝ qz.

By contrast, in the regime (T << ω) where quantum effects are important,

nω ≈ e−
ω
T and the dynamics remain. In order to proceed with our treatment of (4),

we therefore must consider the dispersion ωq; please see Figure 4. In particular we’ll

get a purely classical result, (6), if all the modes in the Brillouin zone are excited;

otherwise the modes will be classical up to a wavevector cutoff determined by quantum

mechanics (see Figure 4). The relevant wavevector scales are the Brillouin zone (qBZ)

and the thermal (qT ) wavevectors, where the latter’s temperature-dependence, via the

dispersion ωq ∝ qz for low q, is

qT ∝ T
1
z (7)

and we note that 1
qT

is a generalized deBroglie wavelength that correponds to the usual

free-particle case when z = 2. We emphasize that the smaller of the two wavevector

scales qT and qBZ serves as a cutoff for the classical fluctuations. If qT < qBZ then

not all modes in the Brillouin zone are thermally excited; in this case the dynamical

exponent enters (4) via qT and thus quantum effects contribute to the variance of the

order parameter fluctuations.

Let us now apply these ideas towards analyzing (4) when the important cutoff is

qT . We revisit the most strongly temperature-dependant part of the ω-integral in (4),

breaking it up into two separate parts as approximately

I = I1 + I2 ≈
∫ T

0

dω

(
T

ω

)
Im χqω +

∫ ∞
T

dω e−
ω
T Im χqω. (8)

We note that for q < qT the delta function in (4) and (5) ensures that only I1 contributes

in (8); for q > qT , I1 is zero and I2 involves an exponential damping factor and thus can
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be ignored to leading order. Therefore, using Kramer-Kronig relations, we can write (4)

as

〈δφ2
T 〉 ≈ T

∑
q<qT

χq (T << ωq for q < qT ). (9)

where the dynamics are present via (7). In this approach, the key distinction between

the two moment variances, (6) and (9), lies in their wavevector cutoffs: in the purely

classical case (6) it is a constant (qBZ), whereas when quantum effects are important,

(9), the dynamical exponent z enters through qT .

Using the Landau theory of phase transitions (also called the Landau-Devonshire

theory in the area of ferroelectric phase transitions) [26, 28, 29] combined with (6) and

(9), we can relate the variance 〈δφ2
T 〉 to the susceptibility χ, an observable quantity

[22, 30]. In the magnetic and ferroelectric cases of interest here,

χ−1
q ∝ κ2 + q2 (10)

where κ is the inverse correlation length so that in the limit of q → 0 we have

χ−1 ∝ κ2. (11)

We recall that Landau theory is a symmetry-based description of macroscopic properties

near a phase transition; here we will be considering behavior on length-scales greater or

equal to 1
qT

. This coarse-graining ensures that the main effects of zero-point fluctuations

are absorbed in the Landau coefficients but that thermal effects show up through the

fluctuations of the order parameter field coarse-grained over 1
qT

. We assume that this

scale is large enough so that a Taylor expansion of the free energy is still reasonable for

our applications.

The Landau free energy density for a system with moment φ and conjugate field E
is

f =
1

2
αφ2 +

1

4
βφ4 +

1

2
γ|∇φ|2 − Eφ (12)

where α→ 0 at the transition and β and γ are positive constants for a continuous phase

transition to a uniformly ordered state that we wish to consider. Minimizing this free

energy with respect to the order parameter φ, we obtain

E = αφ+ βφ3 − γ∇2φ. (13)

Solving for φ in (13), we obtain its most probable value associated with the

maximum of its probability distribution. In order to determine the observed moment, we

consider the effects of fluctuations due to a random (Langevin) field added to E . More

specifically we must average over the random fluctuations in (13) using φ → φ + δφ

where φ is the average and 〈δφ〉 = 0; we obtain

E = (α + 3β〈δφ2〉)φ+ γ∇2φ (14)

to lowest order where we note that the variance term arises from the anharmonic effects

of the cubic term in the equation of state. In the limit of small φ and E , we can Fourier

transform this expression to obtain

χ−1
q = (α + 3β〈δφ2〉) + q2. (15)
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Taking the expression (15) in the q → 0 limit and again retaining the most strongly

temperature-dependent terms, we find that

lim
T→0

κ2 ∝ 〈δφ2
T 〉 (16)

where we have assumed a quantum critical point (QCP) so that α→ 0 as T → 0.

The careful reader may ask why we are distinguishing between the most probable

and the average (observed) value of φ, and this question can be addressed by discussion

of equation (15). If the coarse-graining underlying our Landau theory is macroscopic,

then the q phase space and thus the variance is small, except in the Ginzburg regime to

be defined below, so that the the most probable and the average values are essentially

identical. However, as we have already noted, our coarse-graining is mesoscopic and

not macroscopic and therefore we must include the variance in our calculations. An

alternative way to address this issue is to recall that the true equation of state is found

by averaging over the most probable one ([31]); for a Gaussian theory of course the

average and the most probable values of φ are identical. Finally we emphasize that (16)

is only valid near a Tc = 0 phase transition since for a nonzero Tc there are additional

terms proportional to Tc 6= 0 so that this expression of proportionality no longer holds

[30].

We can now combine (9), (10) and (16) to determine the temperature-dependence

of the susceptibility near a quantum critical point; towards this goal, we write

κ2 ∝
∑
q<qT

T

κ2 + q2
≈ T

∫ qT

κ

qd−1

q2
≈ T qd−2

T

{
1−

(
κ

qT

)d−2
}
. (17)

where, using qT ∝ T
1
z , we are tempted to neglect the κ

qT
term on the right-hand side of

(17) and write

χ−1 ∝ κ2 ∝ T
(d+z−2)

z . (18)

(18) shows that the quantum critical exponent for the susceptibility is d+z−2
z

that can

be compared to the classical value of unity (e.g. the Curie susceptibility) outside the

Ginzburg regime. Now we can ask, when is this approach valid? We can answer this

question by rearranging (17) to yield(
κ

qT

)2

∝ T
(d+z−4)

z

{
1−

(
κ

qT

)d−2
}
. (19)

From (19), we see that
(
κ
qT

)
→ 0 as T → 0 if deff ≡ d+ z > 4; in this case the inverse

susceptibility in the approach to a QCP has the temperature-dependence displayed in

(18) and no further fluctuation effects need to be considered. dupperspace = 4 − z is thus

the upper critical spatial dimension of this theory. An analogous treatment leads to

dupper = 4 for the purely classical description [13, 30]; it is more complicated than the

T → 0 case due to the presence of more finite terms, so here we will simply state the

result.
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Let us now return to (17) and (19) with cutoff qT . It is as if the frequency (or time)

dimension is equivalent to z wavevector (or space) dimensions through the dispersion

relation that relates frequency to z factors of wavevector (ω ∝ qz). Perhaps it is easier to

state that the inclusion of dynamics in quantum critical phenemona theory reduces the

upper critical dimension from 4 in the classical limit (where dynamics can be ignored)

to 4 − z (where dynamics must be considered). From this standpoint, we are usually

above the upper critical dimension at a quantum phase transition whereas we are below

it for its classical counterpart.

We have already noted that the frequency dimension is truncated by the Bose

function and can be envisioned to have a finite-size of order T , so that the corresponding

time dimension is of finite-size of order 1
T

. The crucial point here is that the role of

temperature near a quantum critical point is to constrain the temporal dimension; for

d < dupperspace = 4− z, thermal effects can be treated compactly via the ideas of finite-size

scaling. More generally, we note that the frequency integration in (4) can be performed

by contour integration where the poles for the Bose function are imaginary [27]. This is

an alternative to the real-frequency and real-time description given here, and it yields

the same results mathematically.

Quantum Criticality: Key Concepts

• The dynamical properties of the order-parameter fluctuations affect the

equilibrium thermodynamic properties in the quantum critical regime (in

contrast to their classical counterparts where only thermodynamic properties

usually only depend on statics).

• The dynamical exponent z, defined by the dispersion relation (ω ∝ qz)

at the quantum critical point, plays an important role in quantum critical

phenomena.

• The effective dimensionality, deff = d + z, is the sum of the spatial

and temporal dimensions, where the latter is represented by the dynamical

exponent.

• Near a quantum critical point (QCP), temperature acts as a boundary

condition on time and not as a simple tuning parameter.

• There exists a finite-temperature quantum critical region near a QCP

where there is a gapless dispersion, qT << qBZ and qT ∝ T
1
z .

• At sufficiently low temperatures near a QCP, the temperature-

dependence of the inverse susceptibility is

χ−1 ∝ T
d+z−2

z (d+ z > 4)

(with weak logarithmic corrections for d+ z = 4)
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3. Ferroelectrics Necessities

So why study the influence of quantum effects in materials with ferroelectric tendencies?

Before addressing this question, let us familiarize ourselves with key features of

ferroelectrics (FE); here we emphasize aspects important to our topic at hand,

referring the reader eager for further information to several detailed reviews and books

[9, 28, 32, 33, 34, 35, 36, 37, 38, 39].

From a working “engineering” standpoint, a ferroelectric is a material that has a

spontaneous polarization that is switchable by an electric field of practical magnitude;

in a finite system the polarization is defined as the dipole moment per volume averaged

over the unit cell volume [37]. In Figure 5, the link between ferroelectrics, pyroelectrics,

piezoelectrics and dielectrics is presented graphically. In piezoelectrics an applied

mechanical stress results in a voltage and vice versa [28, 32, 33, 36]. A change in

temperature causes an electrical polarization in a pyroelectric [28, 32, 33, 36] and it is

the practical switchability of this polarization that distinguishes a pyroelectric from a

ferroelectric [36]. Inversion but not time-reversal symmetry is broken at a ferroelectric

transition. The development of a spontaneous polarization results from electric dipoles

that are classical and non-relativistic; they are spatially extended within the unit cell.

A ferroelectric displays a polarization-electric field hysteresis that is analogous to the

magnetization-magnetic field hysteresis measured in magnetic materials. Because the

polarization is the electric dipole moment per unit volume it has the units of charge/area

[28]. Only the relative polarization, not its absolute value, is measured and this is usually

performed by integrating a switching current [37].

Figure 5. Venn diagram indicating graphically the relationship beween

ferroelectrics, pyroelectrics, piezoelectrics and dielectrics. Applied stress and

temperature changes lead to electrical polarization in piezoelectrics and in

pyroelectrics respectively [28, 32, 33, 36]; the switchability of this polarization

in a field of practical magnitude (and is less than the breakdown electric field)

is what distinguishes a ferroelectric from a pyroelectric [36].

Qualitively there are two types of ferroelectric transitions [28]: those driven mainly

by amplitude fluctuations (displacive) and those driven mainly by angular fluctuations



CONTENTS 17

(order-disorder) at atomic scales. In the latter case, the entropy change at the transition

is higher than in the former situation. At low temperatures, particularly as T → 0,

ferroelectic transitions are predominantly displacive and we’ll return to this topic

when we discuss analogies with itinerant magnetism in the next section. Here we

are implicitly discussing ionic ferroelectricity where the polarization results from ionic

displacements, though we do note “electronic ferroelectricity” in molecular crystals

where the polarization is due to the ordering of electrons [40]. We emphasize that

ionic ferroelectrics can be order-disorder and/or displacive in their character. In these

ferroelectics, strong coupling of the polarization and the lattice often leads to first-order

transitions, both of order-disorder and displacive varieties.

In conventional (ionic) ferroelectrics, the electric dipoles associated with the

spontaneous polarization are produced by atomic rearrangements and they develop long-

range order at a ferroelectric transition. Indeed the soft-mode theory of ferroelectricity

[28, 41, 42, 43], a lattice dynamics description, links the diverging dielectric response

with a vanishing phonon frequency and can indeed be viewed as an early model of

quantum criticality. We can glean a flavor for the soft-mode approach by considering

the frequency-dependent electrical permittivity, εω of a simple diatomic harmonic lattice

εω = ε∞ +
ε0 − ε∞
1− ω2

ω2
TO

(20)

where ε0 and ε∞ refer to the permittivities at zero (static) and infinite frequencies

respectively. In the absence of free charge, the zero and the pole of εω, respectively,

determine the longitudinal and transverse optical mode frequencies ωLO and ωTO
resulting in the relation [34, 44]

ε0
ε∞

=

(
ωLO
ωTO

)2

(21)

that links the softening of a polar (transverse optical) phonon to the development of

ferroelectricity.

This minimalist approach to soft-mode theory can of course be generalized to

include anharmonicities and many polar modes where the frequencies are either

measured [43] or calculated using first-principles methods [45, 46, 47]. We emphasize

that a finite spontaneous polarization can only exist in a crystal with a polar space

group [45], though this does not ensure its switchability in a practical electrical field. A

structural signature of ionic ferroelectricity is that the finite polarization crystalline

configurations result from small polar distortions of a high-symmetry (paraelectric)

structure so that there is a simple pathway between them [45]. In Figure 5 we display

the crystal structure of the well-studied perovskite ferroelectric BaTiO3, its paraelectric

(cubic) structure and two of its polarization states. From a first-principles perspective, a

fingerprint of ferroelectricity is the presence of unstable polar phonons in high-symmetry

reference structures and this has been a successful method for characterizing known and

new ferroelectric materials [45]. Until relatively recently, it has been tacitly assumed
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that the polar phonon frequency vanishes as a function of temperature but of course

other tuning parameters (like pressure) could achieve this softening as well.

Figure 6. Crystal structures of the perovskite ferroelectric BaTiO3. a) High-

temperature cubic paraelectric and room-temperature tetragonal ferroelectric

structures for (b) up and (c) down polarizations respectively (Pup and Pdown)

indicating the relative displacements of the positively charged Ti and negatively

charged O ions; reprinted from Ahn et al. [48] with permission.

It is worth comparing the relative strengths of the electric and magnetic dipole

forces. In atomic units FM , the force between two magnetic dipoles at a distance r, is

FM =
µ0µB
4πr3

≡ α2
F

4π

(aB
r

)3

(22)

where aB = 0.05 nm and αF ≡ 1
137

are the Bohr magneton and the fine structure

constant respectively; by contrast, for an electric dipole p = e∆aB, the dipolar

interaction force is

FD =
p2

8πε0r3
≡ ∆2

4π

(aB
r

)3

, (23)

where the parameter ∆ = O(1) is determined by effective charges and atomic

displacements [49]. The ratio of the ferroelectric to ferromagnetic dipolar forces

is then of order
(

∆
α

)2 ≡ (137)2, indicating that long-range interactions are more

significant in ferroelectrics than in generic magnetic systems. This ratio is a contributing

factor towards explaining why the Ginzburg regime, where long-wavelength (“infrared”)

fluctuations govern the critical behavior, in ferroelectrics is empirically significantly

smaller than its counterpart in magnets in many cases [29]; classically the Ginzburg

regime below Tc is defined by the temperature interval close to a phase transition where

order parameter fluctuations are comparable or larger than the average value of the

order parameter itself. However corrections to simple mean-field (Landau) theory due

to anisotropic dipolar forces and anisotropic elastic interactions may be important. For

example, the first logarithmic corrections to mean-field exponents due to fluctuations at

marginal dimensionality were calculated for a three-dimensional uniaxial ferroelectric

[6, 50, 51]; these predictions were confirmed by experiment [52, 53] and played an
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important role in the development of the renormalization group approach to classical

phase transitions [54, 55].

In the previous section we related 〈δφ2
T 〉 to χ(T ) using (6), (9) and (16); let’s now

apply these results to d = 3 ferroelectrics where we are considering a QCP where the

gap in the polar optical mode vanishes with a resulting dispersion as ω ∝ q as measured

by neutron scattering [56, 57, 58] so the dynamical exponent z = 1. In the proximity of

a transition where α = 0, we have at long wavelengths (q → 0)

χ(T )−1 ≈ T

∫ qc

κ

qd−1dq

q2
(24)

where qc is the cutoff appropriate for the temperatures of interest; here we are implicitly

neglecting the temperature-dependence of κ which, according to (19), is reasonable for

T → 0 if d + z > 4. At high temperatures (T � ωq for q < qBZ), qc = qBZ has no

temperature-dependence so we recover the Curie result χ−1 ∝ T ; here we have assumed

that κ has saturated and thus is constant for these high temperatures. However when

quantum effects become important (qT << qBZ), qc = qT ∝ T 1/z; applying the results

(17), (18) and (19) to d = 3 ferroelectrics (z = 1), we obtain

χ−1 ∝ T
d−2+z

z = T 2 (25)

which we emphasize is distinct from the classical (Curie) behavior (χ−1 ∝ T );

since deff = d + z = 4 we also have log corrections that are usually difficult to

observe experimentally. We note that we have reproduced a result first calculated

diagrammatically [16, 17, 59] and then rederived using other methods [18, 19, 20, 22, 60].

A critical reader may note that here we have neglected the long-range dipolar

interactions discussed previously; several theoretical studies [16, 17, 18, 22] indicate

that their main effect near a QCP is to produce a gap in the longitudinal fluctuations,

but that the transverse fluctuations remain critical. This conclusion is supported by

recent measurements [22] of χ(T ) near a ferroelectric QCP (FE-QCP) indicating good

agreement with (25). We should stress that at a QCP with d + z > 4, both κ and qT
go to zero; however in this case, as we saw in (19), the ratio qT

κ
diverges as T → 0 so

it is the “ultraviolet” fluctuations that are crucial. By contrast at a classical transition,

κ → 0 and the wavevector cutoff qc = min{qT , qBZ} remains constant, and if d < 4

the “infrared” fluctuations are important. The key roles of very different fluctuation

regimes at classical and at quantum critical points suggests why the influence of dipolar

interactions is distinct in these two cases.

Anisotropic elastic effects in ferroelectris has also been studied [61]. The resulting

domains have sufficiently slow dynamics, perhaps due to their physical extent or to

pinning, that they do not seem to contribute to low-temperature thermodynamic

quantities on measurable time-scales studied to date [22].

Analogous to Einstein’s approach to the specific heat problem [34], we can also

consider the situation where the low-energy excitations are dispersion-free with a single

frequency ω0. This is just the case of a simple harmonic oscillator [27] so we have

χ(ω) ∝ ω0

ω2 − ω2
O

(26)
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and

χ
′′
(ω) ∝ δ(ω − ω0)

ω0

. (27)

Using the identity for the Bose function

n
(ω
T

)
+

1

2
=

1

2
coth

( ω
2T

)
, (28)

we input (27) into the general expression for the moment amplitude variance (4) to

obtain

〈δφ2〉 ∝ 1

ω0

coth
( ω0

2T

)
. (29)

Taking the q → 0 limit of (15) we obtain

χ−1 = (α + 3β〈δφ2〉) (30)

where α and β are defined in (12); both are finite since we are not at a phase transition.

Combining (29) and (30), we then obtain

χ−1 =

[
α +

3Aβ

ω0

coth
( ω0

2T

)]
(31)

which can be rewritten in the Barrett form [62, 63]

χ = C
[ω0

2
coth

( ω0

2T

)
− T0

]−1

(32)

where C =
ω2
0

6β
and T0 = −αA

6β
are constants written in terms of the original parameters.

We re-emphasize that the Barrett (or rather “Einstein-Barrett”) expression is for

dispersion-free excitations [28]; it is thus not valid in the immediate vicinity of a quantum

critical point where, similar to the situation in the Debye model [34, 44], excitations of

different wavevectors have different frequencies.

The Grüneisen ratio, Γ = α̃
cP

where α̃ and cp are the thermal expansion and the

specific heat respectively, has been identified as a physical quantity that diverges at a

QCP and is constant at a classical critical point [64, 65, 66]. The Grüneisen ratio is then

a useful bulk thermodynamic probe to locate, classify and categorize QCPs in a diverse

set of materials, so let’s now use the methods we’ve developed to determine Γ(T ) near

a FE-QCP. As an aside, we note that this Grüneisen ratio is to be distinguished from

the Grüneisen parameter that measures the logarithmic change of a particular mode

frequency as a function of volume change; the two quantities are only simply related

when the lattice frequencies are temperature-independent which is definitely not the

case for the (predominantly) displacive ferroelectrics (DFEs) of interest here.

Using Maxwell’s relations, the Grüneisen ratio can be written as the effect of

a volume change on a solid’s total thermal energy, Γ = 1
V
∂V
∂U

. Because d = 3

displacive quantum paraelectrics (z = 1) reside in their marginal dimension (deff =

4), their critical behavior can be described by a self-consistent mean-field theory

where fluctuation corrections due to anharmonicities are included via the fluctuation-

dissipation theorem; we’ve already implemented this approach in (15) where the
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Gaussian fluctuations are treated to leading order using (9). This approach is only

strictly valid for deff > 4, but the weakly temperature-dependent logarithmic corrections

to mean-field theory are likely to be too small to be observable in most experiments [22].

The free energy as a function of the polarization change (δφE where here φE is the electric

dipole)

F (δφE, δV ) =
α

2
δφ2

E +
a

2
δV 2 − η(δV )(δφ2

E) (33)

where on symmetry grounds the form of the coupling term is even in δφE but odd in

δV , the change in volume from the equilibrium T = 0 value; α = 0 at a phase transition

and a and η are constants.

T → T+
c (Tc > 0) T → 0+ (Tc = 0)

Inverse Dielectric

Susceptibility T T 2

χ−1

Grüneisen Ratio

Γ = α
cP

T T−2

Constant Diverging

Table I: Expected temperature-dependences of two experimental probes in the

approach to d = 3 ferroelectric critical points we reproduce susceptibility results found

elsewhere [16, 17, 18, 19, 20, 22, 59, 60]. Here T → T+
c and T → 0+ refer to classical

and to quantum critical points respectively. In the approach to a classical critical point,

the inverse dielectric susceptibility displays Curie (χ−1 ∝ T ) behavior; for T → 0+, it

scales as χ−1 ∝ T 2 where here we are neglecting weak logarithmic corrections for the

relevant case d+ z = 4. We note that χ = ε− 1 where ε is the dielectric function. The

Grüneisen ratio, Γ = α
cP

where α and cp are the thermal expansion and the specific heat

respectively, diverges near a quantum critical point (Γ ∝ T−2); by contrast it remains

constant near a classical one and thus is an important signature of quantum criticality

[64, 65, 66].

Minimizing (33) with respect to volume and, using (9) to average over fluctuations

to get the most probable result, we obtain

〈δV 〉 ∝ 〈δφ2
E〉 (34)
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so that

ΓFE(T ) =
1

V

(
δV

δU

)
∝ 〈δφ

2
E〉

δU
. (35)

Because neither the numerator or the denominator has a singularity in (T − Tc) for a

finite transition temperature Tc, we expect that

ΓCFE(T → Tc) ∝ (T − Tc)0 (36)

will be independent of temperature; this is supported by experiment reporting the

identical temperature-dependences of thermal expansion and specific heat near finite-

temperature ferroelectric phase transitions [28].

However in the approach to a T → 0+ FE-QCP, we can use (16) to write

lim
T→0+

〈δφ2
E〉 ∝ χ−1 ∝ T 2. (37)

Analogous to the Debye approach to the specific heat [44], the change in energy is equal

to the temperature multiplied by the number of accessible modes

δUQFE ∝ T (qdT ) (38)

so that the temperature-dependence of Γ in the vicinity of a (d = 3) FE-QCP is

ΓQFE =

(
δV

δU

)
∝
(
〈δφ2

E〉
δU

)
∝ χ−1

TqdT
=
T 2

T 4
=

1

T 2
(39)

that diverges with decreasing temperature and thus is dramatically different from the

temperature-independent classical case (36); here we are implicitly considering the

strongly temperature-dependent part of φE.

Since Γ = α̃
cP

where α̃ and cP are the thermal expansion and the specific

heat respectively, its experimental determination involves two distinct measurements.

Not only does the temperature-dependence of Γ signify the importance of quantum

fluctuations, but it is also an independent determination [67] of the dynamical exponent

z. In Table I. we summarize the distinctive temperature-dependences of the inverse

susceptibility and the Grüneisen ratio in the vicinity of three-dimensional classical and

quantum displacive ferroelectric critical points.
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Ferroelectric Necessities: Key Concepts

• A ferroelectric has a spontaneous polarization that is switchable by an

electric field.

• Inversion symmetry is broken in the ferroelectric phase.

• The temperature-dependence of observable quantities (e.g. suscept-

bility) in the vicinity of both classical and quantum critical points can be de-

termined using a self-consistent mean-field theory where fluctuation

corrections due to anharmonicities are given by the fluctuation-

dissipation theorem.

• The Barrett form of χ(T ) results if a single Einstein frequency is

assumed; this is not valid in the vicinity of a QCP where the wavevector-

dependence of the excitation spectrum (dispersion) is important.

• The Grüneisen ratio diverges with decreasing temperature near a

quantum ferroelectric critical point but remains constant near its

classical counterpart.

More generally paraelectrics near displacive ferroelectric quantum critical points

offer appealing examples of quantum critical behavior often without the complications of

dissipation and damping that occur in metallic magnetic systems. Furthermore because

their dispersion is linear (z = 1), quantum critical paraelectrics can be studied just

below, at or just above their upper critical dimension (dupper = 3 + 1 = 4) making

detailed comparison between theory and experiment possible in ways that are not so

straightforward for their metallic magnetic counterparts (e.g. z = 3 for a metallic

ferromagnet)[12, 18, 22]. It is thus perhaps not so surprising that some of the earliest

theoretical studies of quantum criticality were done in a paraelectric setting [16, 17].

A key similarity between displacive ferroelectrics (DFEs) and metallic magnetic

systems is that in both material classes amplitude fluctuations of the appropriate

moments on length-scales of order their unit cells are significant so that it is relatively

straightforward to suppress their orderings to T → 0. By contrast, in insulating magnets

and order-disorder ferroelectrics the moment fluctuations are mainly orientational on

length-scales of order their unit cells in the high-temperature phase; it is therefore

challenging to prevent ordering at low temperatures for the study of quantum criticality,

though there are indeed some magnetic examples [15, 68, 69, 70, 71]. As an aside, we

should note that in the literature the descriptives metallic and itinerant are often used

interchangeably; here we will use both terms to mean that the volume of the Fermi

surface encloses the magnetic carriers. Of course the dynamics in displacive ferroelectrics

(propagating vibrational modes) are distinct from those in itinerant magnets (spin

precession and dissipative spin dynamics) and this will result in different quantum
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critical behavior. The issue of universality near quantum phase transitions is still one of

open discussion, and a new class of materials for detailed study could shed light on this

central issue [72]. With this goal in mind, in Table II. we summarize key similarities

and differences between displacive ferroelectrics and itinerant ferromagnets, focussing

on characteristics most relevant for the study of quantum criticality.

Displacive Ferroelectrics Metallic Ferromagnets

Dipole Origin

Charge Separation Bohr Magnetron of Electron

(and Possible Orbital Motion)

Classical Quantum

Non-Relativistic Relativistic

No Intrinsic Angular Momentum Intrinsic Spin Angular Momentum

T > Tc
Dipole Moments Ill-Defined Due to Amplitude Moment Fluctuations

Moment Fluctuation Energy Scale > Tc

Dynamics

Propagating Precessional and Dissipative

Atomic Vibrations Spin Fluctuations

(Second-Order in Time) (First-Order in Time)

Dynamical Exponent z 1 3

(ω ∝ qz) (Assuming Landau damping)

dupperspace = 4− z 3 1

Table II: Key Similarities/Differences between Displacive Ferroelectrics and

Metallic Ferromagnets Most Relevant for the Study of Quantum Criticality.

4. The Case of SrT iO3 to Date

So far we’ve discussed quantum criticality in displacive ferroelectrics in rather broad,

abstract terms...let’s now turn to what all this means specifically for the case of SrT iO3

(STO), a material that has been an important setting for basic research and for specific

applications over the course of several decades [28, 73]. Here we will focus mainly

on summarizing its low-temperature properties, where more detail can be found in

reviews (and references therein) elsewhere [8, 9, 28, 73, 74]. As we have already

discussed, ferroelectricity in the ABO3 perovskites is driven predominantly by soft long-

wavelength transverse optical (TO) phonons; thus this displacive ferroelectric (DFE)

phase transition is naturally sensitive to pressure-tuning and hence to studies of quantum

criticality. BaTiO3 (BTO) was the first perovskite ferroelectric to be identified, and the

development of FE from its simple high-temperature cubic perovskite structure was very

appealing and led to intense study [28]. At high temperatures, the dielectric response

of SrT iO3, an isovalent cousin of BTO, is Curie-Weiss and suggests a ferroelectric

temperature of Tc ∼ 40K. Like BTO, STO has a soft TO mode such that ε−1 ∝ ω2 over

a broad temperature region [43]. However at Tc = 105K, STO has a cubic-tetragonal

(C-T) transition where both phases are paraelectric in contrast to the C-T transition
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in BTO where FE develops. In STO there are clear thermodynamic anomalies at Tc
but no inversion symmetry-breaking, though at low temperatures boundaries between

tetragonal domains are polar [75, 76]. Phonon softening at the Brillouin zone boundary

is observed at Tc and this antiferrodistortive (AFD) transition in STO is associated

with the development of staggered rotations of oxygen octahedra in adjacent unit cells.

Though STO polar soft modes are present, ferroelectricity is not observed to the lowest

temperatures measured at ambient pressure [22].

Figure 7. Temperature-dependance of the inverse dielectric function ε−1(T )

at ambient pressure for SrT iO3 as a function of the square of the temperature

up to approximately T = 50K from [22] indicating good agreement with the

behavior ε−1 ∝ T 2 expected theoretically (ε = 1+χ) in the approach to a d = 3

ferroelectric quantum critical point where the weak logarithmic corrections are

not observed [16, 17, 18, 19, 20, 22, 59, 60]. The room-temperature cubic

perovskite crystal structure of SrT iO3 is shown in the top left corner. The

lower inset is an expanded view of the low-temperature data [22], indicating an

upturn below 4K most likely due to coupling of the polarization with acoustic

phonons [19, 22, 59, 77, 78].

The unexpected low-temperature behavior in the dielectric response of STO (it
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is large but finite as shown in Figure 7) led to STO being named the first “quantum

paraelectric” [79]. It was assumed that the stability of the paraelectric state in low

temperature STO is due to effects of zero-point fluctuations analogous to the situation

in liquid helium where crystallization is never achieved at ambient pressure. There

was already prior theoretical literature on the effects of quantum fluctuations on

low temperature displacive transitions [16, 17, 59, 60, 62], and experiments on STO

stimulated more theoretical research in this direction [9, 18, 19, 20, 22, 80, 81, 82].

Usually one associates zero-point fluctuations with light atoms like hydrogen or helium

so their significance for STO may seem surprising. However quantum effects can also

assume importance when there are two or more low-temperature phases present, for

example paraelectricity and ferroelectricity, with negligible energy differences [28]. In

the case of STO, the coupling between the oxygen rotations and the soft polar mode

is very small so that quantum fluctuations can affect the AFD and the FE effectively

independently [78]; computationally quantum fluctuations have been shown to suppress

the FE transition [81], supporting the proposal that STO is a quantum paraelectric.

It was noted early on that the Einstein-Barrett expression (32) [62] for the dielectric

susceptibility does not work well for STO [79], most likely because STO has a phonon

dispersion [28]. Indeed it is exactly why STO is of interest to us at low temperatures

since we expect scale-free quantum fluctuations there to be quite important.

The antiferrodistortive transition in STO at Tc = 105K at ambient pressure is very

close to a tricritical point and indeed STO is a marginal system very close to the stability

edge of its paraelectric phase. External perturbations including uniaxial stress, epitaxial

strain and chemical subsitution induce ferroelectricity at finite temperatures. More

recently it has been found [9, 83, 84, 85] that ferroelectricity can also be induced in STO

with isotope subsitution (Oxygen-18) such that for SrT i(16O18
1−xOx)3 the ferroelectric

transition temperature scales as TFE ∝ (x − xc)0.5 for x ≥ xc ≈ 0.3 where TFE = 23K

for x = 1. In the simplest models isotope subsitution softens the polar phonons, and

there are several such theoretical discussions specific to STO [9, 86, 87, 88]; here the

key assumption is that the mass increases at constant stiffness. However we might also

expect that a decrease in frequency increases the susceptibility and thus decreases the

stiffness, leading to an increase in fluctuation amplitude. The relative importance of

mass vs. stiffness change in describing isotopic substitution in STO is a topic of current

discussion.

On the experimental side, application of hydrostatic pressure to STO-18 (x = 1)

suppresses its ferroelectric transition to zero-temperature [89], so that the effects of

quantum fluctuations can be studied precisely at the QCP. More recently the dielectric

response of SrT i(18O16
x O1−x)3 has been studied for varying x at very low temperatures

at ambient pressure; because it does not depend strongly on sample growth conditions

or purity, it has been suggested that disorder is not a key feature [22]. The detailed

behavior of the dielectric response is in excellent agreement with theoretical predictions

[9, 17, 18, 19, 20, 22, 59, 60, 77, 82], suggesting that this is a system where detailed

interaction between theory and experiment are possible. Work is currently in progress



CONTENTS 27

on the Grüneisen ratio [66] in this same set of materials to explore its behavior at

and in proximity to the DFE-QCP (displacive ferroelectric quantum critical point) [67].

We note it is necessary to take account of the coupling of the electronic polarization

field with the acoustic phonons to obtain a full description of the dielectric behavior

particularly at the very lowest temperatures, below a few Kelvin [19, 22, 77, 78].

Figure 8. Effective temperature vs. reduced effective pressure phase diagram

for SrT iO3, KTaO3 and related materials. Here the effective temperature is

the ratio of the temperature and the material’s Debye temperature associated

with its optical phonon branch
(
T
TD

)
. The effective pressure can be tuned

by isotopic (SrT i(18O16
x O1−x)3) or by chemical (Sr1−xCaxTiO3) substitution

[90, 91], or by application of external hydrostatic pressure [89]. Based on an

integrated theoretical-experimental approach [22], a selection of materials is

positioned on this phase diagram (with units of effective pressure defined in [22])

where a critical quantum paraelectric is one with a gapless dispersion (ω ∝ qz)
whereas the Einstein-Barrett description [62] may only apply to materials in

the “quantum paraelectric” phase with a gapped spectrum. Insert: T 2
c vs 18O

percentage in SrT i(18O16
x O1−x)3 with a linear slope indicating an isotopically-

tuned ferroelectric phase transition temperature with Tc ∝
√
x, a result in

agreement with self-consistent mean-field theory [22]. The room-temperature

cubic perovskite structure of SrT iO3 is also shown in the top of the phase

diagram. This figure is adapted from Rowley et al. [22].

For the sake of completeness, we should add that although the transverse optic

soft mode in SrT iO3 reaches zero frequency only in STO-18 causing ferroelectricity
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below roughly 30K, there is a different and rather unexpected kind of short-range

ferroelectric distortion in all isotopic variations of STO: below roughly 80K, the Sr-ions

displace along [111] directions, yielding a triclinic structures with local polarizations

[75, 76]. Under normal conditions, these local polarization cannot all be aligned to yield

a macroscopic polarization, so in some important way cryogenic STO with 18O does not

behave as a conventional paraelectric. The ferroelectric nanodomains are nestled inside

larger ferroelastic domains (“walls within walls”) [75]. This local symmetry may play

a role in the crystallographic structure of ferroelectric STO with 18O, and this remains

an oBpen question. Again we note that the response time of these domains appears

to be very slow [61] as they don’t appear to contribute to observed low temperature

thermodynamic quantities studied so far [22].

In a nutshell, STO and its isotope variants, provide a nice setting to study quantum

criticality since the dynamics are simple (propagating) and it resides at its upper critical

spatial dimension dupperspace = 4−1 = 3 so that results from both scaling and self-consistent

phonon theories apply (up to logarithmic corrections) and can be compared in detail with

experiment. In Figure 8 we display a schematic Temperature-Pressure phase diagram

indicating the observed behavior of SrT iO3 and related perovskite materials at ambient

pressure. Of course there are a number of other exciting recent developments associated

with STO at low temperatures that also present exciting research opportunities both

for fundamental study and also towards applications, and we mention them briefly here:

• Giant Piezoelectricity. The large piezoelectric response of STO at low

temperatures makes it very useful for a number of cryogenic applications [92]. To

our knowledge, the piezoelectricity of the isotopically mixed STO family has not

been systematically measured and it may be tunable as a function of the 18O/16O

ratios and epitaxial strain to suit specific needs.

• Photoinduced Enhanced Dielectric Constant. It has been found that a

significantly enhanced dielectric constant can be induced in STO by ultraviolet

radiation with the suggestion that it is related to quantum effects [93, 94], possibly

through large polaron formation [95]

• Chemically Doped STO. There has been extensive work on the low temperature

properties of chemically doped quantum paraelectrics [96], particularly on impurity-

induced ferroelectricity. The development of quantum relaxors and quantum

paraelectric glassiness has been less studied and could be important [97], as we’ll

discuss in the next section, for electrocaloric applications.

• Electron Transport in Doped STO. Electron transport in n-doped SrT iO3,

achieved either by oxygen reduction or by Nb subsitution, has been observed [98],

with high carrier mobility [99, 100] and unusual resistive behavior [101]. The

magetoresistance and the Hall resistivity associated with photoinduced carriers in

STO is also unconventional [102] suggesting that the metallic state emerging from

doped STO may need further characterization particularly due to its very low Fermi

temperature.
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• Superconductivity in STO. Electron-doped STO is one of the most dilute

superconductors known [103, 104], and most likely a non-BCS mechanism

is necessary for its explanation More recently a gate-tunable insulating-

superconducting transition has been observed in an STO weak link [105], again

pointing to anomalous behavior in this material. The dependence of the

superconducting Tc on the percentage of 180 in the STO is an active topic of

theoretical [106, 107] and experimental [108] research. We will return to the

question of superconductivity in STO in the “Open Questions” section.

These are just some of the many stimulating questions associated with STO

at low temperatures. Of course this material is very much in the news at higher

temperateratures including its role in oxide interfaces [109, 110, 111] and as a substrate

that mysteriously enhances the superconductivity in FeSe [112].

In this section we have focussed on ferroelectric quantum criticality in STO, and we

conclude it by noting that ferroelectric quantum phase transitions have been observed

in a variety of systems including other insulating perovskites [113], organic complexes

[114, 115, 116] and narrow-band semiconductors [117]. In order to emphasize this point,

in Figure 9 we display four distinct examples of ferroelectric quantum transitions, noting

the range of Tc’s accessible with chemical substitution and applied pressure.

5. A Flavor for Low Temperature Applications

Let us now turn to some low-temperature applications of ferroelectrics. As we mentioned

earlier, the current trends due to market demands are for faster and smaller devices.

Ferroelectric films are used as passive elements in dynamical random access memories

(DRAMs) comprised of grids of capacitors with access transistors; here each bit is stored

in a distinct capacitor where 0 and 1 correspond to the absence/presence of charge

[36, 118] and the appeal of FE (and PE) materials is their high dielectric constants.

DRAMS are among the highest density memories in current use with readily available

64 Gbit chips. Despite their many attractive features that include ultrafast speeds and

low cost, DMRAMs require regular memory refresh cycles to ensure that the stored data

is not lost due to everpresent leakage currents. The refresh interval, currently about 60

milliseconds, depends on the ratio of the stored charge to the leakage current. An

area of current interest is to lengthen the time between refresh cycles, both to increase

device time for memory access and to reduce power consumption. If such a “long-refresh

DRAM” were run at 77 K, where the leakage currents are significantly smaller than at

ambient temperature, the refresh frequency might drop orders of magnitude from kHz

to Hz where details would depend on material specifics.

Ferroelectric films are also used as active memory elements in FeRAMs (ferroelectric

random access memories, also called FRAMS) where information is stored in

polarization (charge) states [28, 36, 119]. The low cost and high speed of FeRAMs makes

them competitive with other storage devices [36, 119] if they can maintain the demands

of miniaturization [120]; they are particularly attractive for satellite applications due
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a)T
b)

c) d)

Figure 9. Four phase diagrams indicating different materials where

ferroelectric quantum phase transitions have been studied experimentally with

tuning by pressure or by chemical substitution. a) Pressure-tuned ferroelectric

quantum phase transition in perovskite BaTiO3. The figure labels C,T,O and

R refer to the cubic, tetragonal, orthorhombic and rhombohedral structural

phases of BaTiO3. The polarization direction points in different directions in

each of the three ferroelectric phases (T, O and R). All transitions are first-

order at ambient pressure. This figure is adapted from Ishidate et al. [113] with

permission. b) The IV-VI family of narrow-band semiconductors GeTe and

PbTe have soft transverse-optical phonon modes that can lead to ferroelectric

instabilities. Pressure, carrier concentration and chemical composition can

be used to tune these materials through ferroelectric quantum transitions

as shown in this figure adapted from Suski et al. [117].c) Quantum phase

transition in a compositionally tuned organic uniaxial ferroelectric tris-sarcosine

calcium chloride. Here the quantum ferroelectric transition is tuned by chemical

substitution. This figure is adapted from Rowley et al. [116]. d) Pressure-

temperature phase diagrams of the charge-transfer complexes DMTTF−QCl4
and DMTTF − QBr4. Inset: Close to Pc, T

2
c scales with P in the ionic

antiferroelectric DMTTF −QBr4. We note that this scaling is similar to that

of Tc(x) shown in the inset of Figure 9, suggesting that external and chemical

pressure have similar effects on Tc. This figure is adapted from Horiuchi et al.

[114] with permission.
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to their radiation hardness [36]. Data storage cells in FeRAMs, as in DRAMs, consist

of ferroelectric capacitor-based structures with access transistors; in FeRAMs it is the

nonlinear relationship between applied field and polarization (charge) in ferroelectric

materials that is exploited to store information analogous to the situation in magnetic

core memories. For such a memory cell, the switching barrier (∆U) must be larger

than the thermal energy scale, kBT , so that the stored information is not corrupted.

Therefore we can equate the switching and the thermal barriers

∆U = kBT ⇒ Lc (40)

to obtain a critical length-scale Lc that sets the lower-bound on the characteristic system

size. In a ferroelectric memory, the switching barrier can be estimated as the energy

stored in its effective capacitor. Since these devices are operated at fixed voltage (V , the

standard silicon logical level that is currently 4.5± 0.5 volts) with effective capacitance

C, we write

∆U =
1

2
CV 2 ∝ L (for fixed V ) (41)

so that we see that the switching barrier scales with C and hence with its characteristic

length [36]. More specifically, taking C = (ε0ε)(α) where α = A
d

, we find that

Lc =

(
T

V 2

)(
4

αε

)
10−13 m (42)

where T (K), V (v), α(m) and ε are inputs. A typical FRAM currently available uses

PZT (lead zirconate titanate, Pb(Zr, T i)O3, with ε = 1300) and operates at ambient

temperature (T = 300 K) with α = 10−5 m since it is 100 nm (L) thick with a lateral

length of about 1 micron; at the current voltage standard (5 volts) , Lc is 0.1 nm

(L � Lc) indicating that these FRAMs are thermally safe. However should V , α

and/or ε decrease in the future, T is a very useful tuning parameter that can be reduced

to ensure that the stored charge is robust to thermal fluctuations. In Figure 10 we

show the scaling of the characteristic length Lc for three specific materials at room

temperatures using current device parameters.

Reduced operating temperatures leads to decreased conductivities and thus to

increased breakdown fields [36]. Higher E fields can then be applied, resulting in

increased charge and hence enhanced signal to noise for the sense amplifiers [36]; we

recall that the relative polarization is the switched charge per unit area. Typically this

is determined by applying a series of voltage pulses before and after the switching. The

resulting currents are measured over time and and these integrated curves determine

the switched charge [36, 37]. Because the voltage is fixed at a standard logic level,

increased electric fields require decreasing the FE film thicknesses. However if we try to

increase stored charge by making a FE film thinner at room temperature, it may short

since its conductivity is too high to prevent breakdown. More generally, the breakdown

threshhold depends on the product of the electric field and the conductivity (σ) or rather

on the ratio V σ
d

[36]. Therefore for fixed V , we can reduce the film thickness d if we also

decrease σ which is achieved by lowering the ambient temperature.
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Figure 10. The minimum device size for room-temperature operation without

thermal corruption for three different materials where TGS stands for triglycine

sulfate; reproduced from M. Alexe [121] with permission and thanks.

Luckily ferroelectrics themselves can play a role in refrigeration via electrocaloric

cooling (EC), the reduction of temperature of a FE material in response to the removal

of an electric field [28, 33, 36, 122, 123, 124]. Its magnetic counterpart, magnetocaloric

cooling (MC), if often used to access millikelvin temperatures. Until recently EC effects

were too small for practical applications and thus were not pursued. However several

developments [122, 123, 124, 125], suggest that we should revisit this phenomenon,

particularly at low temperatures. More specifically the breakdown fields of FE films are

significantly larger than those of their bulk counterparts so that higher E fields can be

applied, and multicapacitor technology can be used to increase their effective volumes

[123]. But we are getting ahead of ourselves. In the spirit of being self-contained, let’s

remind ourselves of the key features of adiabatic cooling so that we can understand why

to date the magnetic version has been more successful than its electric counterpart at

low temperatures (and why we believe this topic deserves to be revisited!).

The entropy as a function of field and temperature (S(E, T )) plays a key role in

the electrocaloric effect and its magnetic analogue (MC) where E is replaced by B. We

can write

dS =

(
∂S

∂T

)
E

dT +

(
∂S

∂E

)
T

dE (43)

where, for an adiabatic process (dS = 0) and using the Maxwell Relation
(
∂S
∂E

)
T

=
(
∂P
∂T

)
E

(where P is the polarization), we obtain

−
(
∂T

∂E

)
S

=

(
∂P
∂T

)
E(

∂S
∂T

)
E

= T

(
∂P
∂T

)
E

cE
. (44)

Here cE is the specific heat at fixed electric field that has contributions from polar (cPE)

and nonpolar (cXE ) modes, where the latter are predominantly acoustic phonons. The
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Figure 11. (a) SP (T,E) Entropy-temperature cycling for two distinct field

strengths indicating the Carnot-like heat cycle that is the basis for electrocaloric

cooling. Here Ti is the initial temperature in the adiabatic depolarization

process, T 0
f is the final temperature in the absence of coupling to the non-

polar modes and Tf is the final temperature including the effect of the non-

polar modes. ∆Q is the heat that can be extracted from an external load. We

require ∆SP to be substantially greater than ∆SX for effective cooling to occur

(as in case (c) in contrast to case (b). (b) Hypothetical dispersion where the

sound velocity in the polar branch is less than that in the nonpolar branch. (c)

Hypothetical dispersion where the polar modes have a relatively flat dispersion,

indicating very low interactions between the ions or the dipoles and thus large

polar entropy.

specific heat is of course a measure of the entropy and thus its magnitude will be related

to the dispersion which together with the Bose function determines the distribution of

low-energy excitations as a function of wavevector in the Brillouin zone. In a displacive

FE, the low-frequency polar modes are localized in q-space and cPE is exponentially

suppressed with a gap (E 6= 0); thus at low temperatures cE is dominated by cXE
and varies as T 3. These same acoustic phonons, in the absence of a ferroelectric phase

transition, are the main contribution to the pyroelectric coefficient
(
∂P
∂T

)
E

; it is expected

to decrease sufficiently rapidly with decreasing temperature that
(
∂T
∂E

)
S

in (44) vanishes

in the limit T → 0 [28]. Consistent with this argument, cryogenic studies of KTaO3

and SrT iO3 yielded negligible EC effects [126, 127, 128, 129] and this approach to low

temperature refrigeration has not been actively pursued for some time. So why then can

magnetocaloric cooling be used routinely to access very low temperatures in complete
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contrast to its electric counterpart (to date)?

We can address this question by looking at the entropy of the polar modes,

SP (E, T ), as a function of field and temperature shown schematically in Figure 11

a). Here we start at an initial temperature Ti at E = 0 and isothermally apply a

finite electric field; the entropy of the polar modes is then lowered. The electric field is

then removed adiabatically, and the temperature T Pf associated with the polar modes

(uncoupled to other degrees of freedom) decreases. However since the total system is

in equilibrium all modes, polar and nonpolar, must be at the same temperature. More

specifically the total entropy (S) is a sum of the polar and the nonpolar contributions,

S = SP + SX and there will be overall cooling of the system if and only the entropy

∆SP is substantially greater than ∆SX in Figure 11 a: more to the point, a nonzero

∆SP is not good enough! In other words, the polar entropy loss due to the applied

electric field must exceed the entropy to be removed from the acoustic phonons; in

this case the system is cooled to a final temperature Tf such that T Pf < Tf < Ti
as shown schematically in Figure 11 a). This is difficult to achieve in simple displacive

ferroelectrics where the sound velocity of the polar modes is not substantially below that

of the nonpolar ones. One way to obtain ∆SP >> ∆SX might be to reduce the sound

velocity in the polar branch significantly compared to its nonpolar counterpart (see Fig.

11 b), effectively reducing the coupling between electric dipoles to increase their entropy.

Another approach to ∆SP >> ∆SX is to identify materials where the polar modes

have flat dispersion bands, again indicating low dipole-dipole effective interactions and

a high polar entropy. (see Fig. 11 c). We note that such flat dispersions are signature

features of spin systems, specifically dilute paramagnetic salts and frustrated magnets,

that are commonly used in cryogenic solid-state refrigeration [130]. Because the dipole-

dipole interaction is typically several orders of magnitude larger for electric dipoles than

for their magnetic counterparts [29], the identification of paraelectric and ferroelectric

materials with the necessary high polar entropy at low temperatures is particularly

challenging.

What about electrocaloric cooling at low temperatures near a ferroelectric quantum

critical point? Interestingly enough, this question has already been posed near a

magnetic quantum critical point [131], and work is currently in progress to study the FE

case [132]. Ideally we want a system with a high density of minimally coupled electric

dipoles at low T to achieve an enhanced polar entropy; possible candidates include

order-disorder, relaxor materials and ferrielectric materials. Ideally we’d be approaching

a quantum tricritical point to maximize the change in polarization without hysteresis;

if we want the sound velocity of the polar modes to approach zero, then we also want to

be at a Lifshitz point. Furthermore we’d like the system to have a uniaxial polarization

to maximize coupling to the electric field ( ~E · ~P ). Amnonia sulphate is an order-disorder

ferroelectric with a high entropy at its FE transition, though it has not been practical

for EC at room temperature due to its ionic conductivity [123]. This may not be an

issue at low temperatures where ionic motion becomes frozen [123]. Indeed, analogous

to their magnetic counterparts, dilute paraelectric salts have been used to cool small
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samples to millikelvin temperatures [133, 134, 135, 136]; with current multicapacitor

technology this technique could be greatly improved and should be revisited.

In principle low-temperature electrocaloric cooling has many advantages over its

magnetic counterpart, particularly its reduced size (no magnets necessary!) and its

comparative simplicity of operation....we just have to find the right materials to make

it work! Joule heating should not be a problem since the polar materials are reasonable

insulators. For space applications, where dilution refrigeration is difficult to use

particularly in microgravity conditions [131, 137], electrocaloric cooling has an additional

advantage as FE materials are robust to everpresent cosmic rays [36].

Other possible applications for low-temperature paraelectric/ferroelectric materials

include:

• Satellite Electronics. The radiation effects, due to cosmic rays and to solar

activity, are not evenly distributed for low-Earth orbits and are even harsher in

outer space. There is an urgent need for new electronics that are high-performance,

radiation-tolerant and reliable [138] at an ambient temperature of roughly 10K, and

onboard infrared detectors require mK operating temperatures.

• Phased-Array Radar. Ferroelectric-superconductor “sandwiches” hold promise

as phase shifters in phased-array radar GHz devices, running at significantly lower

voltages than current versions. The dielectric losses must be kept very low to be

competitive with existing bulky technologies and thus they would have to be run

at low temperatures [36], possibly maintained by electrocaloric cooling.

• High Permittivity Supercapacitors. There is an increasing need for high

density storage of electrochemical energy with rapid charge/discharge cycles and

long lifetimes. Low dielectric loss and large-scale requirements could make this a

niche for low-temperature PE/FE materials that are relatively cost effective [139]

and there are certainly many more!

6. Open Questions for Future Research

In order to emphasize research prospects, we conclude with a list of open research

questions in this area of materials near ferroelectric quantum phase transitions:

• Specific FE Materials for Study at Low Temperatures.

Here we have argued that the study of materials near their ferroelectric quantum

critical points (FE-QCPs) can play an important role towards understanding

universality at quantum phase transitions. However there are only a few systems

currently known that remain paraelectric to the lowest temperatures, so are those

the only materials in this class to study? There are certainly many materials

with low (classical) ferroelectric transition temperatures (Tc < 100K) [28, 36],

and we expect that these Tc’s could be reduced with pressure, stress or with
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chemical or isotopic substitution to yield possible QCPs that, to our knowledge,

have not yet been explored. Empirically it seems that ferroelectric transition

temperatures are very sensitive to pressure, as shown in Figure (9 a) with the

case of BaTiO3. If this pressure-sensitivity of Tc is indeed the general case, then

this would significantly broaden the range of materials [28, 36] where quantum

phase transitions could be studied. Furthermore the possibility of antiferroelectric

quantum criticality could be pursued in materials like NaNbO3 with coexisting

ferroelectric and antiferroelectric interactions [140] whose low antiferroelectric Tc
(∼ 12K) could be reduced (e.g. by substitution) and where quantum fluctuations

are known to be important at low temperatures [141]. We note that competing

energy- and length-scales can lead to quantum electric-dipole liquids [142], novel

textures [143, 144, 145, 146] and exotic topological excitations [77, 147] in the

vicinity of these quantum phase transitions.

• Add Spin: A Multiferroic QCP.

Additional degrees of freedom can be added in a systematic fashion to materials

near their ferroelectric quantum phase transitions with rich phase behavior expected

[148]. For example, quantum criticality in multiferroic materials [149] is only

starting to be explored [30, 150, 151, 152, 153, 154] where the possible interaction

of two quantum critical points could lead to novel behavior. Of course here

we have been predominantly discussing bulk materials, but the low temperature

behavior of multiferroic heterostructures [155, 156] could be intriguing as well.

Multiferroics at low temperatures with high polar and spin entropies could also

be candidates for advanced cryogenic solid-state refrigeration [157] based on both

the electrocaloric and the magnetocaloric effects. We also note the intriguing case

of multiferroic relaxor quantum critical points [116, 154], that may be related to

quantum glassiness.

• Add Charge: An Exotic Metal and Unusual Superconductivity

The study of quantum criticality in magnetic metals is often motivated by the

search for non-Fermi liquids and for unconventional superconductivity [14]. It is

thus fitting that we note that the study of materials near a FE-QCP also fits into

this “grand scheme.”

Charge is another degree of freedom that can be added to a material near its

FE-QCP by either chemical and/or gate doping. The Mott criterion [158] for

the critical dopant concentration (nc) for a metal-insulator transition in doped

semiconductors occurs when the average dopant-dopant distance (d = n−
1
3 ) is a

significant fraction of the effective Bohr radius (a∗B = ε~2
m∗e2

) where ε is the dielectric

constant; more concretely the critical concentration nc is defined as n
1
3
c a∗B ≈ 0.26,
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consistent with experiment in many semiconductors [159]. Since the effective Bohr

radius is proportional to the dielectric constant (ε), it is much larger in n-doped

STO than in doped semiconductors based on silicon or germanium (see Figure 12);

therefore a lower nc is expected, consistent with observation [103, 159].

Figure 12. A plot of the effective Bohr radius (aB) vs. carrier density

(n) indicating good comparison between the Mott criterion (n
1
3
c aB = 0.26)

for the metal-insulator transition and experimental systems where aB and the

critical carrier density (nc) for metallicity are known. Because the effective Bohr

radius is inversely proportional to the dielectric constant, it is large for SrT iO3

indicating a low critical carrier concentration for the metal-insulator transition

consistent with observation [103]. This figure is adapted from Edwards and

Sienko [159] with permission and with thanks to K. Behnia [160].

The Fermi temperature of metallic n-doped STO can be quite low because of the

relatively high carrier effective mass and low densities of practical interest; for

example for n = 5.5 × 1017cm−3, TF ≈ 13K [103]. At first sight this dilute-

carrier metal looks quite conventional with a resistivity that scales like T 2 as

expected for a three-dimensional Fermi liquid [161]. The catch is that this behavior

continues to temperatures well above the Fermi temperature TF [101, 161] where

TF is determined from the coefficient of the linear heat capacity; in 3d for fixed m,

TF scales with n
2
3 . Arguments based on Fermi liquid, requiring that T << TF , are

clearly inapplicable for T > TF ; furthermore A, the coefficient of this T 2 behavior
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in the resistivity, can change by four orders of magnitude by tuning the carrier

concentration and persists to dilute limits where known mechanisms for T 2 behavior

are no longer applicable [101].

The traditional BCS theory of superconductivity [162] requires TF � TD where

TF and TD are the Fermi and the Debye temperatures, a condition not satisfied in

n-doped STO; for n = 5.5×1017cm−3, TF ≈ 13K and TD ∼ 400K so that TF � TD
[103]. The possibility of superconductivity in doped paraelectric materials was

considered within the decade after the BCS theory was developed [163], and it was

originally suggested that in polar semiconductors the temperature-scale associated

with the longitudinal optical phonon, TL, could replace TD in the BCS formalism.

However, because typically TF � TL for densities n . 1019cm−3, the implication

was that superconductivity in doped paraelectrics was unlikely [163]. Nevertheless

superconductivity was predicted [164, 165] in n-doped STO based on intervalley

scattering; this theory led to the experimental search and subsequent observation

of superconductivity [166] in this material. Ironically, despite this finding, it was

later shown that key aspects of the motivating theory, particularly the assumption of

multiple valleys, were inapplicable to STO [167]; this unusual twist in the discovery

of superconductivity in doped STO only makes its existence all the more remarkable

[106, 107, 168, 169, 170, 171].

In summary superconductivity occurs in n-doped STO, and we still have a lot to

learn about its underlying mechanism and the symmetry of its order parameter.

It has been observed both in bulk [91, 103, 108, 172, 173, 174, 175] and, more

recently, at the interface of LaAlAs/SrT iO3 [176, 177, 178]. Like many of the

heavy fermion superconductors, it is in the parameter regime TF << TD and thus

cannot be described by conventional BCS theory; however here spin-fluctuation

mediated pairing cannot be applied. Instead it is natural to consider electron-

electron interactions mediated by long-range Coulomb potentials. However here

there is a conundrum: the pairing interaction V (ω) scales inversely proportional to

the dielectric constant ε(ω) so that at ω = 0 the interaction is small (since ε(0) is

large). We recall that, within a soft mode picture described by (20) and (21), the

dielectric constant can be written as

ε(ω)

ε∞
= 1− (ω2

LO − ω2
TO)

ω2
TO

(ω2 − ω2
TO)

(45)

where the transverse and longitudinal frequencies, ωTO and ωLO, are defined by the

zero and the pole of ε(ω). We see that in the frequency window

ωTO < ω < ωLO (46)

ε(ω) is negative leading to an attractive interaction V (ω); furthermore we note

that this “attractive frequency range” is increased to its maximal value close to a

FE-QCP where ωT → 0. Here, for simplicity, we have suppressed the q-dependence

of V (ω) and ε(ω), but it is likely to be important due to the long-range nature of
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the Coulomb interaction. Furthermore we need to consider screening effects of the

added carriers that become progressively more important with increasing n.

So here we have a dynamical interaction between the electrons...what’s so difficult

about this superconducting problem? Actually there are two challenges to address.

The first is that a key aspect of Cooper’s crucial superconducting pairing argument

relies on being close to the Fermi energy [162]; in this case the pairing problem

becomes effectively 2d where, in contrast to 3d, binding is possible with an

arbitrarily weak attraction. This reasoning is not applicable to n-doped STO where

the pairing energy-scale is much higher than TF . Second, any attractive pairing of

electrons must somehow “bypass” their repulsive Coulomb interaction. In the BCS

theory retardation is crucial [162]: the ionic screening cloud lags behind the electron,

thereby mediating its attraction to other electrons. By contrast in n-doped STO,

where there is no similar large separation of time-scales, further study of possible

“Coulomb circumvention” mechanisms is needed. In a nutshell in superconducting

n-doped STO we are without two key features of the successful BCS theory of

superconductivity...how would the theoretical description of superconductivity have

developed if this amazing phenomenon had first been observed in n-doped STO

rather than in mercury?

Finally we should note that electron-doped STO is one of the most dilute

superconductor known to date [91, 103]; its density of charge carriers, coming from

niobium doping (on Ti sites), lanthanum substitution (on Sr sites) or from oxygen

vacancies, is comparable to that of the metal bismuth that has only very recently

been shown to go superconducting, albeit at a temperature much lower than that

observed in n-doped STO [104].

Since much study of quantum criticality is motivated by the search for novel forms of

superconductivity, let us note another research possibility in this direction. Doped

strained STO is a good candidate for a polar metal and indeed is currently a topic of

active study in multi-component metallic/dielectric heterostructures where STO is

known to host a finite polarization [179]. Though such polar metals were predicted

theoretically some time ago [180], recently there has been a resurgence of interest

in such materials in part due to their anisotropic thermal and magnetoelectric

properties [39, 181, 182]. At low temperatures such polar metals will surely

become polar superconductors; such non-centrosymmetric superconductors are

expected to have mixed-parity pairing mechanisms with topological aspects to their

superconducting states [183].

These are just some of the many research questions that emerge from looking

at paraelectrics and ferroelectrics at low temperatures; proximity to quantum phase

transitions can be tuned by either pressure, stress, chemical or isotope substitution and

perhaps even more. This is a rich area with plenty to explore, and we look forward to
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progress in these and many related topics.
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