5,307 research outputs found
The acceleration and precipitation of Van Allen outer zone energetic electrons
Time profiles of trapped Van Allen electrons in auroral zone
Welding high-strength aluminum alloys
Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding
Studies of the auroral substorm. III CONCEPT of the magnetospheric substorm and its relation to electron precipitation and micropulsations
Concept of auroral magnetospheric substorm and relation to electron precipitation and micropulsation
Studies of the auroral substorm. I - Characteristics of modulated energetic electron precipitation occurring during auroral substorms
Characteristics of modulated energetic electron precipitation occurring during auroral substorm
BGK electron solitary waves: 1D and 3D
International audienceThis paper presents new results for 1D BGK electron solitary wave (phase-space electron hole) solutions and, based on the new results, extends the solutions to include the 3D electrical interaction (E ~ 1/r 2) of charged particles. Our approach for extending to 3D is to solve the nonlinear 3D Poisson and 1D Vlasov equations based on a key feature of 1D electron hole (EH) solutions; the positive core of an EH is screened by electrons trapped inside the potential energy trough. This feature has not been considered in previous studies. We illustrate this key feature using an analytical model and argue that the feature is independent of any specific model. We then construct azimuthally symmetric EH solutions under conditions where electrons are highly field-aligned and ions form a uniform background along the magnetic field. Our results indicate that, for a single humped electric potential, the parallel cut of the perpendicular component of the electric field (E?) is unipolar and that of the parallel component (E||) bipolar, reproducing the multi-dimensional features of the solitary waves observed by the FAST satellite. Our analytical solutions presented in this article capture the 3D electric interaction and the observed features of (E|| ) and E?. The solutions predict a dependence of the parallel width-amplitude relation on the perpendicular size of EHs. This dependence can be used in conjunction with experimental data to yield an estimate of the typical perpendicular size of observed EHs; this provides important information on the perpendicular span of the source region as well as on how much electrostatic energy is transported by the solitary waves
Perturbation analysis of trapped-particle dynamics in axisymmetric dipole geometry
The perturbation analysis of the bounce action-angle coordinates
for charged particles trapped in an axisymmetric dipole magnetic field is
presented. First, the lowest-order bounce action-angle coordinates are derived
for deeply-trapped particles in the harmonic-oscillator approximation. Next,
the Lie-transform perturbation method is used to derive higher-order anharmonic
action-angle corrections. Explicit expressions (with anharmonic corrections)
for the canonical parallel coordinates and are
presented, which satisfy the canonical identity . Lastly, analytical expressions for the bounce and drift frequencies
(which include anharmonic corrections) yield excellent agreement with exact
numerical results.Comment: 16 pages, 3 figure
Occupational exposure to crystalline silica and autoimmune disease.
Occupational exposure to silica dust has been examined as a possible risk factor with respect to several systemic autoimmune diseases, including scleroderma, rheumatoid arthritis, systemic lupus erythematosus, and some of the small vessel vasculitidies with renal involvement (e.g., Wegener granulomatosis). Crystalline silica, or quartz, is an abundant mineral found in sand, rock, and soil. High-level exposure to respirable silica dust can cause chronic inflammation and fibrosis in the lung and other organs. Studies of specific occupational groups with high-level silica exposure (e.g., miners) have shown increased rates of autoimmune diseases compared to the expected rates in the general population. However, some clinic- and population-based studies have not demonstrated an association between silica exposure and risk of autoimmune diseases. This lack of effect may be due to the limited statistical power of these studies to examine this association or because the lower- or moderate-level exposures that may be more common in the general population were not considered. Experimental studies demonstrate that silica can act as an adjuvant to nonspecifically enhance the immune response. This is one mechanism by which silica might be involved in the development of autoimmune diseases. Given that several different autoimmune diseases may be associated with silica dust exposure, silica dust may act to promote or accelerate disease development, requiring some other factor to break immune tolerance or initiate autoimmunity. The specific manifestation of this effect may depend on underlying differences in genetic susceptibility or other environmental exposures
Extracting joint weak values with local, single-particle measurements
Weak measurement is a new technique which allows one to describe the
evolution of postselected quantum systems. It appears to be useful for
resolving a variety of thorny quantum paradoxes, particularly when used to
study properties of pairs of particles. Unfortunately, such nonlocal or joint
observables often prove difficult to measure weakly in practice (for instance,
in optics -- a common testing ground for this technique -- strong photon-photon
interactions would be needed). Here we derive a general, experimentally
feasible, method for extracting these values from correlations between
single-particle observables.Comment: 6 page
Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy
The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development
- …