5,389 research outputs found

    Optical constants of uranium plasma Final report

    Get PDF
    Thermodynamic and optical properties of uranium plasma in proposed gaseous core nuclear rocket

    A Preliminary Study of Solar Powered Aircraft and Associated Power Trains

    Get PDF
    The feasibility of regeneratively powered solar high altitude powered platform (HAPP) remotely piloted vehicles was assessed. Those technologies which must be pursued to make long duration solar HAPPs feasible are recommended. A methodology which involved characterization and parametric analysis of roughly two dozen variables to determine vehicles capable of fulfilling the primary mission are defined. One of these vehicles was then conceptually designed. Variations of each major design parameter were investigated along with state-of-the-art changes in power train component capabilities. The midlatitude mission studied would be attainable by a solar HAPP if fuel cell, electrolyzer and photovoltaic technologies are pursued. Vehicles will be very large and have very lightweight structures in order to attain the combinations of altitude and duration required by the primary mission

    Modal Test of the NASA Mobile Launcher at Kennedy Space Center

    Get PDF
    The NASA Mobile Launcher (ML), located at Kennedy Space Center (KSC), has recently been modified to support the launch of the new NASA Space Launch System (SLS). The ML is a massive structureconsisting of a 345-foot tall tower attached to a two-story base, weighing approximately 10.5 million poundsthat will secure the SLS vehicle as it rolls to the launch pad on a Crawler Transporter, as well as provide a launch platform at the pad. The ML will also provide the boundary condition for an upcoming SLS Integrated Modal Test (IMT). To help correlate the ML math models prior to this modal test, and allow focus to remain on updating SLS vehicle models during the IMT, a ML-only experimental modal test was performed in June 2019. Excitation of the tower and platform was provided by five uniquely-designed test fixtures, each enclosing a hydraulic shaker, capable of exerting thousands of pounds of force into the structure. For modes not that were not sufficiently excited by the test fixture shakers, a specially-designed mobile drop tower provided impact excitation at additional locations of interest. The response of the ML was measured with a total of 361 accelerometers. Following the random vibration, sine sweep vibration, and modal impact testing, frequency response functions were calculated and modes were extracted for three different configurations of the ML in 0 Hz to 12 Hz frequency range. This paper will provide a case study in performing modal tests on large structures by discussing the Mobile Launcher, the test strategy, an overview of the test results, and recommendations for meeting a tight test schedule for a large-scale modal test
    • …
    corecore