6,588 research outputs found

    Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    Get PDF
    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields

    Research on optimization-based design

    Get PDF
    Research on optimization-based design is discussed. Illustrative examples are given for cases involving continuous optimization with discrete variables and optimization with tolerances. Approximation of computationally expensive and noisy functions, electromechanical actuator/control system design using decomposition and application of knowledge-based systems and optimization for the design of a valve anti-cavitation device are among the topics covered

    A fuel-efficient cruise performance model for general aviation piston engine airplanes

    Get PDF
    A fuel-efficient cruise performance model which facilitates maximizing the specific range of General Aviation airplanes powered by spark-ignition piston engines and propellers is presented. Airplanes of fixed design only are considered. The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its implicity and low volume data storge requirements, appears suitable for airborne microprocessor implementation

    Bayesian analysis of Friedmannless cosmologies

    Full text link
    Assuming only a homogeneous and isotropic universe and using both the 'Gold' Supernova Type Ia sample of Riess et al. and the results from the Supernova Legacy Survey, we calculate the Bayesian evidence of a range of different parameterizations of the deceleration parameter. We consider both spatially flat and curved models. Our results show that although there is strong evidence in the data for an accelerating universe, there is little evidence that the deceleration parameter varies with redshift.Comment: 7 pages, 3 figure

    Measuring the effective complexity of cosmological models

    Get PDF
    We introduce a statistical measure of the effective model complexity, called the Bayesian complexity. We demonstrate that the Bayesian complexity can be used to assess how many effective parameters a set of data can support and that it is a useful complement to the model likelihood (the evidence) in model selection questions. We apply this approach to recent measurements of cosmic microwave background anisotropies combined with the Hubble Space Telescope measurement of the Hubble parameter. Using mildly non-informative priors, we show how the 3-year WMAP data improves on the first-year data by being able to measure both the spectral index and the reionization epoch at the same time. We also find that a non-zero curvature is strongly disfavored. We conclude that although current data could constrain at least seven effective parameters, only six of them are required in a scheme based on the Lambda-CDM concordance cosmology.Comment: 9 pages, 4 figures, revised version accepted for publication in PRD, updated with WMAP3 result

    Transforming growth factor beta (TGF beta) mediates schwann cell death in vitro and in vivo: Examination of c-jun activation, interactions with survival signals, and the relationship of TGF beta-mediated death to schwann cell differentiation

    Get PDF
    In some situations, cell death in the nervous system is controlled by an interplay between survival factors and negative survival signals that actively induce apoptosis. The present work indicates that the survival of Schwann cells is regulated by such a dual mechanism involving the negative survival signal transforming growth factor beta (TGF beta), a family of growth factors that is present in the Schwann cells themselves. We analyze the interactions between this putative autocrine death signal and previously defined paracrine and autocrine survival signals and show that expression of a dominant negative c-Jun inhibits TGF beta -induced apoptosis. This and other findings pinpoint activation of c-Jun as a key downstream event in TGF beta -induced Schwann cell death. The ability of TGF beta to kill Schwann cells, like normal Schwann cell death in vivo, is under a strong developmental regulation, and we show that the decreasing ability of TGF beta to kill older cells is attributable to a decreasing ability of TGF beta to phosphorylate c-Jun in more differentiated cells

    Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature

    Full text link
    We determine the spectra of a class of quantum spin chains of Temperley-Lieb type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ chain as a reference system. We consider open boundary conditions and in particular periodic boundary conditions. For both types of boundaries the identification with XXZ spectra is performed within isomorphic representations of the underlying Temperley-Lieb algebra. For open boundaries the spectra of these models differ from the spectrum of the associated XXZ chain only in the multiplicities of the eigenvalues. The periodic case is rather different. Here we show how the spectrum is obtained sector-wise from the spectra of globally twisted XXZ chains. As a spin-off, we obtain a compact formula for the degeneracy of the momentum operator eigenvalues. Our representation theoretical results allow for the study of the thermodynamics by establishing a TL-equivalence at finite temperature and finite field.Comment: 29 pages, LaTeX, two references added, redundant figures remove

    Compressive Phase Contrast Tomography

    Full text link
    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. In- terference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher con- trast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).Comment: 5 pages, "Image Reconstruction from Incomplete Data VI" conference 7800, SPIE Optical Engineering + Applications 1-5 August 2010 San Diego, CA United State

    Antarctic Sea Ice variations 1973 - 1975

    Get PDF
    Variations in the extent and concentration of sea ice cover on the Southern Ocean are described for the three-year period 1973-75 using information derived from the Nimbus-5 passive microwave imager

    Clinical effectiveness and cost-effectiveness of pegvisomant for the treatment of acromegaly: a systematic review and economic evaluation

    Get PDF
    Background: Acromegaly, an orphan disease usually caused by a benign pituitary tumour, is characterised by hyper-secretion of growth hormone (GH) and insulin-like growth factor I (IGF-1). It is associated with reduced life expectancy, cardiovascular problems, a variety of insidiously progressing detrimental symptoms and metabolic malfunction. Treatments include surgery, radiotherapy and pharmacotherapy. Pegvisomant (PEG) is a genetically engineered GH analogue licensed as a third or fourth line option when other treatments have failed to normalise IGF-1 levels. Methods: Evidence about effectiveness and cost-effectiveness of PEG was systematically reviewed. Data were extracted from published studies and used for a narrative synthesis of evidence. A decision analytical economic model was identified and modified to assess the cost-effectiveness of PEG. Results: One RCT and 17 non-randomised studies were reviewed for effectiveness. PEG substantially reduced and rapidly normalised IGF-1 levels in the majority of patients, approximately doubled GH levels, and improved some of the signs and symptoms of the disease. Tumour size was unaffected at least in the short term. PEG had a generally safe adverse event profile but a few patients were withdrawn from treatment because of raised liver enzymes. An economic model was identified and adapted to estimate the lower limit for the cost-effectiveness of PEG treatment versus standard care. Over a 20 year time horizon the incremental cost-effectiveness ratio was pound81,000/QALY and pound212,000/LYG. To reduce this to pound30K/QALY would require a reduction in drug cost by about one third. Conclusion: PEG is highly effective for improving patients' IGF-1 level. Signs and symptoms of disease improve but evidence is lacking about long term effects on improved signs and symptoms of disease, quality of life, patient compliance and safety. Economic evaluation indicated that if current standards (UK) for determining cost-effectiveness of therapies were to be applied to PEG it would be considered not to represent good value for money
    corecore