509 research outputs found

    Unconditional two-mode squeezing of separated atomic ensembles

    Full text link
    We propose schemes for the unconditional preparation of a two-mode squeezed state of effective bosonic modes realized in a pair of atomic ensembles interacting collectively with optical cavity and laser fields. The scheme uses Raman transitions between stable atomic ground states and under ideal conditions produces pure entangled states in the steady state. The scheme works both for ensembles confined within a single cavity and for ensembles confined in separate, cascaded cavities.Comment: 4 pages, 2 figure

    Mimicking a Squeezed Bath Interaction: Quantum Reservoir Engineering with Atoms

    Get PDF
    The interaction of an atomic two-level system and a squeezed vacuum leads to interesting novel effects in atomic dynamics, including line narrowing in resonance fluorescence and absorption spectra, and a suppressed (enhanced) decay of the in-phase and out-of phase component of the atomic polarization. On the experimental side these predictions have so far eluded observation, essentially due to the difficulty of embedding atoms in a 4 pi squeezed vacuum. In this paper we show how to ``engineer'' a squeezed-bath-type interaction for an effective two-level system. In the simplest example, our two-level atom is represented by the two ground levels of an atom with angular momentum J=1/2 -> J=1/2 transition (a four level system) which is driven by (weak) laser fields and coupled to the vacuum reservoir of radiation modes. Interference between the spontaneous emission channels in optical pumping leads to a squeezed bath type coupling, and thus to symmetry breaking of decay on the Bloch sphere. With this system it should be possible to observe the effects predicted in the context of squeezed bath - atom interactions. The laser parameters allow one to choose properties of the squeezed bath interaction, such as the (effective) photon number expectation number N and the squeezing phase phi. We present results of a detailed analytical and numerical study.Comment: 24 pages, 8 figure

    Coupling of effective one-dimensional two-level atoms to squeezed light

    Full text link
    A cavity QED system is analyzed which duplicates the dynamics of a two-level atom in free space interacting exclusively with broadband squeezed light. We consider atoms in a three or four-level Lambda-configuration coupled to a high-finesse optical cavity which is driven by a squeezed light field. Raman transitions are induced between a pair of stable atomic ground states via the squeezed cavity mode and coherent driving fields. An analysis of the reduced master equation for the atomic ground states shows that a three-level atomic system has insufficient parameter flexibility to act as an effective two-level atom interacting exclusively with a squeezed reservoir. However, the inclusion of a fourth atomic level, coupled dispersively to one of the two ground states by an auxiliary laser field, introduces an extra degree of freedom and enables the desired interaction to be realised. As a means of detecting the reduced quadrature decay rate of the effective two-level system, we examine the transmission spectrum of a weak coherent probe field incident upon the cavity

    Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions

    Get PDF
    We propose a scheme to perform basic gates of quantum computing and prepare entangled states in a system with cold trapped ions located in a single mode optical cavity. General quantum computing can be made with both motional state of the trapped ion and cavity state being qubits. We can also generate different kinds of entangled states in such a system without state reduction, and can transfer quantum states from the ion in one trap to the ion in another trap. Experimental requirement for achieving our scheme is discussed.Comment: To appear in J. Opt.

    Collective spin systems in dispersive optical cavity QED: Quantum phase transitions and entanglement

    Full text link
    We propose a cavity QED setup which implements a dissipative Lipkin-Meshkov-Glick model -- an interacting collective spin system. By varying the external model parameters the system can be made to undergo both first-and second-order quantum phase transitions, which are signified by dramatic changes in cavity output field properties, such as the probe laser transmission spectrum. The steady-state entanglement between pairs of atoms is shown to peak at the critical points and can be experimentally determined by suitable measurements on the cavity output field. The entanglement dynamics also exhibits pronounced variations in the vicinities of the phase transitions.Comment: 19 pages, 18 figures, shortened versio

    Motion-light parametric amplifier and entanglement distributor

    Get PDF
    We propose a scheme for entangling the motional mode of a trapped atom with a propagating light field via a cavity-mediated parametric interaction. We then show that if this light field is subsequently coupled to a second distant atom via a cavity-mediated linear-mixing interaction, it is possible to transfer the entanglement from the light beam to the motional mode of the second atom to create an EPR-type entangled state of the positions and momenta of two distantly-separated atoms.Comment: 9 pages, 8 figures, REVTe

    Counter-Intuitive Vacuum-Stimulated Raman Scattering

    Get PDF
    Vacuum-stimulated Raman scattering in strongly coupled atom-cavity systems allows one to generate free-running single photon pulses on demand. Most properties of the emitted photons are well defined, provided spontaneous emission processes do not contribute. Therefore, electronic excitation of the atom must not occur, which is assured for a system adiabatically following a dark state during the photon-generation process. We experimentally investigate the conditions that must be met for adiabatic following in a time-of-flight driven system, with atoms passing through a cavity and a pump beam oriented transverse to the cavity axis. From our results, we infer the optimal intensity and relative pump-beam position with respect to the cavity axis.Comment: 4 pages, 4 figure

    Entangled-State Cycles of Atomic Collective-Spin States

    Full text link
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure
    corecore