40 research outputs found

    A Comparison of Laser and Microwave Approaches to CW Beamed Energy Launch

    Get PDF
    One approach to beamed energy propulsion uses a solid heat exchanger to absorb energy from a distant source and transfer it to a working fluid. Systems of this type can be designed using either microwave or laser sources. In general, microwave sources have been expected to be less expensive than lasers for a given power, but to be more limited in range and/or energy density. With the development of high power millimeter-wave sources and low-cost diode laser arrays, both assumptions are open to question. In this paper, we compare current and projected microwave and laser source technologies for a 100-kilogram-class ground-to-orbit launch system and identify key issues affecting the system-level trade between the two approaches

    Feasibility and Performance of the Microwave Thermal Rocket Launcher

    Get PDF
    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%

    The Microwave Thermal Thruster Concept

    Get PDF
    The microwave thermal thruster heats propellant via a heat-exchanger then expands it through a rocket nozzle to produce thrust. The heat-exchanger is simply a microwave-absorbent structure through which propellant flows in small channels. Nuclear thermal thrusters are based on an analogous principle, using neutrons rather than microwaves, and have experimentally demonstrated specific impulses exceeding 850 seconds. A microwave equivalent will likely have a similar specific impulse, since both nuclear and microwave thermal thrusters are ultimately constrained by material thermal limits, rather than the energy-density limits of chemical propellants. We present the microwave thermal thruster concept by characterizing a novel variation for beamed-energy launch. In reducing the thruster concept to practice, the enabling physical process is microwave absorption by refractory materials, and we examine semiconductor and susceptor-based approaches to achieving this absorption within the heat-exchanger structure

    Icemaker^(TM): an excel-based environment for collaborative design

    Get PDF
    The creative process of team design can be rapid and powerful when focused, yet complex designs, such as spacecrafit, can slow and quench the essential elements of this process. Concurrent Engineering techniques partially address this problem, but a fuller realization of their benefits require an approach centering on the human aspects of teamwork. ICEMaker^(TM) is a Microsoft Excel® based software tool that facilitates closer-to-ideal collaboration within teams employing the new Integrated Concurrent Engineering (ICE) methodology. ICE is a generic approach that emphasizes focused collaborative design in a single-room context, and is now employed at several aerospace organizations to increase the productivity of design teams defining complex early development-phase products. By way of introduction, this paper describes the basic elements of ICE needed to understand ICEMaker and its application. We present the design approach, philosophy, and client-server architecture of the ICEMaker system, as well as a simplified user scenario. NASA's Jet Propulsion Laboratory (JPL) has recently adopted ICEMaker for its primary early-phase space mission and system advanced project design team, Team-X. We describe Team-X's experience with ICEMaker and report on the lessons learned, and qualitative product improvements, resulting from JPL's implementation of ICEMaker

    Current polarity-dependent manipulation of antiferromagnetic domains

    Get PDF
    Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields. Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents. In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry. Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching

    Zinc finger protein ZBTB20 expression is increased in hepatocellular carcinoma and associated with poor prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous studies showed that ZBTB20, a new BTB/POZ-domain gene, could negatively regulate α feto-protein and other liver-specific genes, concerning such as bio-transformation, glucose metabolism and the regulation of the somatotropic hormonal axis. The aim of this study is to determine the potential clinical implications of ZBTB20 in hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>Quantitative real-time RT-PCR and Western blot analyses were used to detect expression levels of ZBTB20 in 50 paired HCC tumorous and nontumorous tissues and in 20 normal liver tissues. Moreover, expression of ZBTB20 was assessed by immunohistochemistry of paired tumor and peritumoral liver tissue from 102 patients who had undergone hepatectomy for histologically proven HCC. And its relationship with clinicopathological parameters and prognosis was investigated.</p> <p>Results</p> <p>Both messenger RNA and protein expression levels of ZBTB20 were elevated significantly in HCC tissues compared with the paired non-tumor tissues and normal liver tissues. Overexpressed ZBTB20 protein in HCC was significantly associated with vein invasion (<it>P </it>= 0.016). Importantly, the recurrence or metastasis rates of HCCs with higher ZBTB20 expression were markedly greater than those of HCCs with lower expression (<it>P </it>= 0.003, <it>P </it>= 0.00015, respectively). Univariate and multivariate analyses revealed that ZBTB20 overexpression was an independent prognostic factor for HCC. The disease-free survival period and over-all survival period in patients with overexpressed ZBTB20 in HCC was significantly reduced.</p> <p>Conclusions</p> <p>The expression of ZBTB20 is increased in HCC and associated with poor prognosis in patients with HCC, implicating ZBTB20 as a candidate prognostic marker in HCC.</p

    Array-Comparative Genomic Hybridization Reveals Loss of SOCS6 Is Associated with Poor Prognosis in Primary Lung Squamous Cell Carcinoma

    Get PDF
    BACKGROUND: Primary tumor recurrence commonly occurs after surgical resection of lung squamous cell carcinoma (SCC). Little is known about the genes driving SCC recurrence. METHODS: We used array comparative genomic hybridization (aCGH) to identify genes affected by copy number alterations that may be involved in SCC recurrence. Training and test sets of resected primary lung SCC were assembled. aCGH was used to determine genomic copy number in a training set of 62 primary lung SCCs (28 with recurrence and 34 with no evidence of recurrence) and the altered copy number of candidate genes was confirmed by quantitative PCR (qPCR). An independent test set of 72 primary lung SCCs (20 with recurrence and 52 with no evidence of recurrence) was used for biological validation. mRNA expression of candidate genes was studied using qRT-PCR. Candidate gene promoter methylation was evaluated using methylation microarrays and Sequenom EpiTYPER analysis. RESULTS: 18q22.3 loss was identified by aCGH as being significantly associated with recurrence (p = 0.038). Seven genes within 18q22.3 had aCGH copy number loss associated with recurrence but only SOCS6 copy number was both technically replicated by qPCR and biologically validated in the test set. SOCS6 copy number loss correlated with reduced mRNA expression in the study samples and in the samples with copy number loss, there was a trend for increased methylation, albeit non-significant. Overall survival was significantly poorer in patients with SOCS6 loss compared to patients without SOCS6 loss in both the training (30 vs. 43 months, p = 0.023) and test set (27 vs. 43 months, p = 0.010). CONCLUSION: Reduced copy number and mRNA expression of SOCS6 are associated with disease recurrence in primary lung SCC and may be useful prognostic biomarkers
    corecore