6 research outputs found

    Terahertz magnetoplasmon resonances in coupled cavities formed in a gated two-dimensional electron gas

    Get PDF
    We report on both experiments and theory of low-terahertz frequency range (up to 400 GHz) magnetoplasmons in a gated two-dimensional electron gas at low (<4K) temperatures. The evolution of magnetoplasmon resonances was observed as a function of magnetic field at frequencies up to ∼400 GHz. Full-wave 3D simulations of the system predicted the spatial distribution of plasmon modes in the 2D channel, along with their frequency response, allowing us to distinguish those resonances caused by bulk and edge magnetoplasmons in the experiments. Our methodology is anticipated to be applicable to the low temperature (<4K) on-chip terahertz measurements of a wide range of other low-dimensional mesoscopic systems

    Enhanced Terahertz Spectral-Fingerprint Detection of α-Lactose Using Sub-Micron-Gap On-Chip Waveguides

    Get PDF
    We investigate using finite element methods how sub-micrometer to micrometer-scale coplanar waveguide (CPW) can be used for the detection of fingerprint spectra of very small (of order 10−14 mL) volumes of analytes in the terahertz (THz) frequency range. The electric field distribution is investigated near the waveguide for various gap widths between the center conductor and ground plane using a finite element simulation (ANSYS High Frequency Structure Simulator, HFSS). Taking lactose monohydrate as an exemplar material, a Drude–Lorentz model is combined for its real and imaginary permittivities with this numerical simulation, finding a significant enhancement in fingerprint detection as the gap width is reduced; the electric field in the CPW is found to increase by a factor ≈14 times moving from a 20 to 0.5-µm-wide gap between center conductor and ground plane, while the on-resonance THz absorption increases ≈14 times. The effective absorption coefficient of the lactose at 530 GHz is investigated as a function of the slot width for various lactose block thicknesses to understand how change in the field confinement and in the effective overlap between the lactose block and incident THz waves affect the effective absorption coefficient

    Genetic Aspects of Lipidoses

    No full text
    corecore