178 research outputs found

    An integrated model for predicting KRAS dependency

    Get PDF
    The clinical approvals of KRAS G12C inhibitors have been a revolutionary advance in precision oncology, but response rates are often modest. To improve patient selection, we developed an integrated model to predict KRAS dependency. By integrating molecular profiles of a large panel of cell lines from the DEMETER2 dataset, we built a binary classifier to predict a tumor's KRAS dependency. Monte Carlo cross validation via ElasticNet within the training set was used to compare model performance and to tune parameters α and λ. The final model was then applied to the validation set. We validated the model with genetic depletion assays and an external dataset of lung cancer cells treated with a G12C inhibitor. We then applied the model to several Cancer Genome Atlas (TCGA) datasets. The final "K20" model contains 20 features, including expression of 19 genes and KRAS mutation status. In the validation cohort, K20 had an AUC of 0.94 and accurately predicted KRAS dependency in both mutant and KRAS wild-type cell lines following genetic depletion. It was also highly predictive across an external dataset of lung cancer lines treated with KRAS G12C inhibition. When applied to TCGA datasets, specific subpopulations such as the invasive subtype in colorectal cancer and copy number high pancreatic adenocarcinoma were predicted to have higher KRAS dependency. The K20 model has simple yet robust predictive capabilities that may provide a useful tool to select patients with KRAS mutant tumors that are most likely to respond to direct KRAS inhibitors

    Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes

    Get PDF
    Lymph node (LN) metastases correspond with a worse prognosis in nearly all cancers, yet the occurrence of cancer spreading from LNs remains controversial. Additionally, the mechanisms explaining how cancers survive and exit LNs are largely unknown. Here, we show that breast cancer patients frequently have LN metastases that closely resemble distant metastases. In addition, using a microsurgical model, we show how LN metastasis development and dissemination is regulated by the expression of a chromatin modifier, histone deacetylase 11 (HDAC11). Genetic and pharmacologic blockade of HDAC11 decreases LN tumor growth, yet substantially increases migration and distant metastasis formation. Collectively, we reveal a mechanism explaining how HDAC11 plasticity promotes breast cancer growth as well as dissemination from LNs and suggest caution with the use of HDAC inhibitors

    Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β–induced Serpine1

    Get PDF
    In tumors, extravascular fibrin forms provisional scaffolds for endothelial cell (EC) growth and motility during angiogenesis. We report that fibrin-mediated angiogenesis was inhibited and tumor growth delayed following postnatal deletion of Tgfbr2 in the endothelium of Cdh5-CreERT2 Tgfbr2fl/fl mice (Tgfbr2iECKOmice). ECs from Tgfbr2iECKO mice failed to upregulate the fibrinolysis inhibitor plasminogen activator inhibitor 1 (Serpine1, also known as PAI-1), due in part to uncoupled TGF-β–mediated suppression of miR-30c. Bypassing TGF-β signaling with vascular tropic nanoparticles that deliver miR-30c antagomiRs promoted PAI-1–dependent tumor growth and increased fibrin abundance, whereas miR-30c mimics inhibited tumor growth and promoted vascular-directed fibrinolysis in vivo. Using single-cell RNA-Seq and a NanoString miRNA array, we also found that subtypes of ECs in tumors showed spectrums of Serpine1 and miR-30c expression levels, suggesting functional diversity in ECs at the level of individual cells; indeed, fresh EC isolates from lung and mammary tumor models had differential abilities to degrade fibrin and launch new vessel sprouts, a finding that was linked to their inverse expression patterns of miR-30c and Serpine1 (i.e., miR-30chi Serpine1lo ECs were poorly angiogenic and miR-30clo Serpine1hi ECs were highly angiogenic). Thus, by balancing Serpine1 expression in ECs downstream of TGF-β, miR-30c functions as a tumor suppressor in the tumor microenvironment through its ability to promote fibrin degradation and inhibit blood vessel formation

    Superfluidity of flexible chains of polar molecules

    Full text link
    We study properties of quantum chains in a gas of polar bosonic molecules confined in a stack of N identical one- and two- dimensional optical lattice layers, with molecular dipole moments aligned perpendicularly to the layers. Quantum Monte Carlo simulations of a single chain (formed by a single molecule on each layer) reveal its quantum roughening transition. The case of finite in-layer density of molecules is studied within the framework of the J-current model approximation, and it is found that N-independent molecular superfluid phase can undergo a quantum phase transition to a rough chain superfluid. A theorem is proven that no superfluidity of chains with length shorter than N is possible. The scheme for detecting chain formation is proposed.Comment: Submitted to Proceedings of the QFS2010 satellite conference "Cold Gases meet Many-Body Theory", Grenoble, August 7, 2010. This is the expanded version of V.

    Quantized bulk fermions in the Randall-Sundrum brane model

    Get PDF
    The lowest order quantum corrections to the effective action arising from quantized massive fermion fields in the Randall-Sundrum background spacetime are computed. The boundary conditions and their relation with gauge invariance are examined in detail. The possibility of Wilson loop symmetry breaking in brane models is also analysed. The self-consistency requirements, previously considered in the case of a quantized bulk scalar field, are extended to include the contribution from massive fermions. It is shown that in this case it is possible to stabilize the radius of the extra dimensions but it is not possible to simultaneously solve the hierarchy problem, unless the brane tensions are dramatically fine tuned, supporting previous claims.Comment: 25 pages, 1 figure, RevTe

    Low Energy Chiral Lagrangian in Curved Space-Time from the Spectral Quark Model

    Full text link
    We analyze the recently proposed Spectral Quark Model in the light of Chiral Perturbation Theory in curved space-time. In particular, we calculate the chiral coefficients L1,...,L10L_1, ..., L_{10}, as well as the coefficients L11L_{11}, L12L_{12}, and L13L_{13}, appearing when the model is coupled to gravity. The analysis is carried for the SU(3) case. We analyze the pattern of chiral symmetry breaking as well as elaborate on the fulfillment of anomalies. Matching the model results to resonance meson exchange yields the relation between the masses of the scalar, tensor and vector mesons, Mf0=Mf2=2MV=43/NcπfπM_{f_0}=M_{f_2}=\sqrt{2} M_V= 4 \sqrt{3 /N_c} \pi f_\pi. Finally, the large-NcN_c limit suggests the dual relations in the vector and scalar channels, MV=MS=26/NcπfπM_V=M_S= 2 \sqrt{6 /N_c} \pi f_\pi and S1/2=<r2>V1/2=2Nc/fπ=0.59fm^{1/2}_S = < r^2 >^{1/2}_V = 2 \sqrt{N_c} / f_\pi = 0.59 {\rm fm} .Comment: 18 pages, no figure

    Identifying a gender-inclusive pedagogy from Maltese science teachers' personal practical knowledge

    Full text link
    Teachers bring with them into the science classrooms their own gendered identitities and their views and perceptions about how boys and girls learn and achieve in science. This paper tries to explore the way in which fourteen Maltese science teachers use their own 'personal practical knowledge' to identify their views about gender and science and create their own individual gender-inclusive pedagogy. The study suggests that the science teachers focus more on the individuality of students and on the social and cultural background of the students in their classrooms rather than on gender. The teachers try to develop pedagogies and assessment practices which take into consideration the personal constructs of individual learners. The ideas for such a gender-inclusive pedagogy emerge from their common-sense experience in the classroom, their training as teachers and are closely interrelated to current ideas of social constructivism

    A deep learning methodology for the automated detection of end-diastolic frames in intravascular ultrasound images

    Get PDF
    Coronary luminal dimensions change during the cardiac cycle. However, contemporary volumetric intravascular ultrasound (IVUS) analysis is performed in non-gated images as existing methods to acquire gated or to retrospectively gate IVUS images have failed to dominate in research. We developed a novel deep learning (DL)-methodology for end-diastolic frame detection in IVUS and compared its efficacy against expert analysts and a previously established methodology using electrocardiographic (ECG)-estimations as reference standard. Near-infrared spectroscopy-IVUS (NIRS-IVUS) data were prospectively acquired from 20 coronary arteries and co-registered with the concurrent ECG-signal to identify end-diastolic frames. A DL-methodology which takes advantage of changes in intensity of corresponding pixels in consecutive NIRS-IVUS frames and consists of a network model designed in a bidirectional gated-recurrent-unit (Bi-GRU) structure was trained to detect end-diastolic frames. The efficacy of the DL-methodology in identifying end-diastolic frames was compared with two expert analysts and a conventional image-based (CIB)-methodology that relies on detecting vessel movement to estimate phases of the cardiac cycle. A window of +/- 100 ms from the ECG estimations was used to define accurate end-diastolic frames detection. The ECG-signal identified 3,167 end-diastolic frames. The mean difference between DL and ECG estimations was 3 +/- 112 ms while the mean differences between the 1st-analyst and ECG, 2nd-analyst and ECG and CIB-methodology and ECG were 86 +/- 192 ms, 78 +/- 183 ms and 59 +/- 207 ms, respectively. The DL-methodology was able to accurately detect 80.4%, while the two analysts and the CIB-methodology detected 39.0%, 43.4% and 42.8% of end-diastolic frames, respectively (P < 0.05). The DL-methodology can identify NIRS-IVUS end-diastolic frames accurately and should be preferred over expert analysts and CIB-methodologies, which have limited efficacy.Cardiovascular Aspects of Radiolog
    corecore