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Abstract

The clinical approvals of KRAS G12C inhibitors have been a revolutionary advance in preci-

sion oncology, but response rates are often modest. To improve patient selection, we devel-

oped an integrated model to predict KRAS dependency. By integrating molecular profiles of

a large panel of cell lines from the DEMETER2 dataset, we built a binary classifier to predict

a tumor’s KRAS dependency. Monte Carlo cross validation via ElasticNet within the training

set was used to compare model performance and to tune parameters α and λ. The final

model was then applied to the validation set. We validated the model with genetic depletion

assays and an external dataset of lung cancer cells treated with a G12C inhibitor. We then

applied the model to several Cancer Genome Atlas (TCGA) datasets. The final “K20” model

contains 20 features, including expression of 19 genes and KRAS mutation status. In the

validation cohort, K20 had an AUC of 0.94 and accurately predicted KRAS dependency in

both mutant and KRAS wild-type cell lines following genetic depletion. It was also highly pre-

dictive across an external dataset of lung cancer lines treated with KRAS G12C inhibition.

When applied to TCGA datasets, specific subpopulations such as the invasive subtype in

colorectal cancer and copy number high pancreatic adenocarcinoma were predicted to

have higher KRAS dependency. The K20 model has simple yet robust predictive capabilities

that may provide a useful tool to select patients with KRAS mutant tumors that are most

likely to respond to direct KRAS inhibitors.

Author summary

Mutant KRAS drives approximately 25% of all cancers and has traditionally been consid-

ered “undruggable”. However, the recent clinical approvals of inhibitors targeting KRAS

with the specific G12C mutation in lung cancer has shepherded in a new era in precision

medicine. Although promising, the responses are often modest and short-lived. Therefore,

the ability to predict which tumors are dependent on KRAS will help select patients most

likely to derive clinical benefit, and those who will not. We have developed an integrated
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“K20” model based on features that can improve prediction of KRAS-dependency beyond

the presence of an activating KRAS mutation. When applied to lung adenocarcinoma,

pancreatic adenocarcinoma, and colorectal cancer patient datasets, the K20 model identi-

fied specific subpopulations that correlate with greater dependency on KRAS. These find-

ings present a novel approach for identifying biomarkers that can aid in the selection of

patients who are most likely to benefit from KRAS inhibitors.

Introduction

Dysregulation of the RAS family of GTPases is responsible for driving nearly 30% of all cancer

types (Catalogue of Somatic Mutations in Cancer [COSMIC] v92). Discovered nearly four

decades ago as the oncogenes NRAS, KRAS, and HRAS, the RAS family has expanded to

include approximately 150 members involved in important cellular processes like cell division,

differentiation, migration, and apoptosis [1]. In healthy cells, membrane-bound RAS-family

proteins remain inactive while bound to GDP until stimulated by extracellular signals, which

will cause the formation of an intermediate complex with GTP and initiate several downstream

signaling cascades. However, missense mutations in RAS proteins render them constitutively

active in the GTP-bound state and have been demonstrated to promote nearly all “hallmarks

of cancer” [2,3].

Of the three major RAS-family isoforms, mutated KRAS comprises 84% of all RAS-driven

diseases and propagates many aggressive tumor types, including lung, colorectal, and pancre-

atic cancer [4]. The role of KRAS in cancer progression is well-studied, but until recently the

protein has largely been considered “undruggable”. Due to the structure and surface topology

of the GTPase, traditional small-molecule inhibitors that can directly antagonize the protein’s

function have been widely regarded as untenable. Attempts to block factors involved in MAP

kinase signaling (such as MEK and Raf) or binding partners to KRAS have shown some clini-

cal promise in specific cancer types but have presented challenges with toxicity and eventual

treatment resistance even in combination with other treatment options [5–7].

Nearly all KRAS mutations are concentrated at three codons: glycine-12 (G12), glycine-13

(G13), and glutamine-61 (Q61) [4]. Recent advances in medicinal chemistry have identified a

binding pocket in the glycine-to-cysteine missense mutant KRAS protein at amino acid 12

(G12C), which comprises approximately 12% of all KRAS cancer mutations and accounts for a

substantial fraction of KRAS mutations in non-small cell lung cancer (13%), and to a lesser

degree in colorectal (4%) and pancreatic cancers (1–3%) [4,8–11]. Tool compounds developed

by Ostrem and colleagues covalently bind to the mutant cysteine and extend into the binding

pocket primarily containing the switch II region (S-IIP), generating a selective response in

mutant cells by repressing signaling [12]. Similar compounds discovered by additional groups

have led to the rapid development of direct KRAS G12C inhibitors, the most clinically

advanced of which are MRTX849 (adagrasib) and AMG510 (sotorasib) [13–15], both of which

are now FDA-approved for use in lung cancer.

Importantly, previous work has revealed that not all KRAS-mutant cell lines are KRAS-

dependent, and that such KRAS-independent cancers exhibit features of an epithelial-mesen-

chymal transition (EMT) and apoptosis resistance [16]. De novo resistance to blockade of

KRAS-activated MAP kinase signaling has recently been linked with high expression of the

EMT regulator zinc finger E-box binding homeobox 1 (ZEB1) [17]. Additionally, genetic mod-

els of KRAS depletion have revealed rapid development of several cell intrinsic and non-cell

autonomous mechanisms of KRAS-independence [18–20]. These data imply that direct
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inhibitors of mutant KRAS may not be as efficacious as is seen with other “oncogene-addicted”

cancers, and numerous mechanisms of resistance may emerge. Consistent with this, while

response rates of ~60–70% are typically seen in lung adenocarcinomas (LUAD) using inhibi-

tors of aberrant EGFR, ALK, ROS1 or RET, the confirmed response rate in the expansion dose

(960 mg) cohort for AMG510 in LUAD patients was about 35%. Even lower, the expansion

cohort of colorectal cancer (CORE) patients had a response rate of 12% [15]. Taken together,

with the emergence of well-tolerated and potent KRAS G12C inhibitors, there is an urgent

need for a biomarker signature that can select patients most likely to benefit from these treat-

ments beyond the presence of an activating KRAS mutation. While previous groups have

developed models to determine RAS activation and dependency in specific cancer types, there

is no model that has identified a gene signature across all cancer types with predictive capabili-

ties of KRAS dependency beyond the RAS pathway [16,21,22]. By integrating several publicly

available datasets that couple KRAS dependencies, genomic features, and tumor-specific tran-

scriptional profiles, we have developed an integrated model (henceforth the K20 model) that

improves prediction of KRAS dependency beyond the presence of an activating KRAS

mutation.

Results

An integrated dataset for modeling KRAS dependency

We used DEMETER2 as our KRAS cancer dependency dataset as it combined three large-

scale RNAi screen datasets and integrated them with model-based normalization [23]. This

model system estimates gene dependency on an absolute scale with a score of zero represent-

ing no dependency, higher/positive scores representing resistance, and lower/negative scores

representing sensitivity (i.e. impaired cell growth upon gene silencing). This dataset allowed us

to use RNAi screen datasets from Project Achilles [24], Project DRIVE [25] and a smaller

breast cell line cohort [26] and integrate it with publicly-available multi-omic datasets from

the Cancer Cell Line Encyclopedia (CCLE) [27]. There were 712 cell lines in total from DEME-

TER2. As expected, the KRAS dependency scores, which represent absolute KRAS depen-

dency, were significantly lower in KRAS-mutant cells compared to KRAS wild-type (WT) cell

lines (Panels A and B in S1 Fig). Using K-means clustering with k = 3, the 712 cell lines were

divided into sensitive (n = 29), intermediate (n = 112) and refractory (n = 571) clusters (Panel

C in S1 Fig). Within the 126 KRAS-mutant cell lines, there was enrichment of sensitive and

intermediate cell lines compared to KRAS wild-type cell lines, which were more refractory

(Fisher-exact p-value = 6.2e-55, Panel D in S1 Fig). Among the 126 KRAS-mutant cell lines,

lung, pancreas and colorectal were the top three diseases with the highest representation

(Panel E in S1 Fig). Because the cell types and expression profiles of the hematologic (e.g. leu-

kemia, multiple myeloma and lymphoma) and non-carcinoma solid tumor cell lines (e.g. CNS

tumors) were very different from carcinoma cell lines, we excluded those and cell lines of rare

diseases from further analysis. In total, there were 444 carcinoma cell lines with expression,

exon mutation and dependency data, of which 106 had KRAS mutations. Fig 1A shows all of

the 444 cell lines sorted by KRAS dependency score with color bars to indicate activating

mutations in KRAS and other genes in the Ras/Raf pathway.

Development of a KRAS dependency classifier

To model “clinical benefit”, which we deemed reflective of tumors either shrinking or becom-

ing cytostatic upon direct KRAS targeting, we grouped cell lines in the “sensitive” (n = 24) and

“intermediate” (n = 83) clusters into a “non-refractory” class. We aimed to build a prediction

model that would classify cell lines into binary groups (non-refractory vs. refractory). The 444
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solid cancer cell lines were randomly divided into training (67%, 72 KRAS-mutant and 226

KRAS WT) and validation (33%, 34 KRAS-mutant and 112 KRAS WT) sets, balancing for tis-

sue types and KRAS dependency clusters. Monte Carlo cross validation via ElasticNet [28] was

used to develop and compare the prediction accuracy of KRAS dependency among different

Fig 1. KRAS dependency in solid cancer cell lines and performance of the K20 model. Cell lines in the training

(N = 298) and validation (N = 146) sets had consensus with DEMETER2 KRAS dependency scores. The 20 predictive

features in the model were identified from CCLE gene expression and mutation data. (A) Waterfall plot showing

KRAS dependency scores of all carcinoma cancer cell lines from DEMETER2 with color bars indicating cell lines with

activating mutations in KRAS, NRAS, HRAS, and BRAF. (B) Receiver operating characteristic (ROC) curve

comparing the K20 model performance (in red) with the KRAS mutation only model (in blue). (C) Bar plot of K20

model coefficients. (D) Heatmap showing gene expression of 19 classifier genes and mutation status of KRAS in the

combined training (in brown) and validation sets (in sky blue) for all 444 cell lines. Entrez ID is indicated in

parentheses next to each gene. Red represents higher expression and blue represents lower expression.

https://doi.org/10.1371/journal.pcbi.1011095.g001
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features in the training set and to pick the best tuning parameters. We compared five different

feature sets to see which one had better KRAS dependency prediction: [1] gene expression

only, [2] gene expression and gene level mutation status (binary), [3] gene expression and

KRAS mutation status (binary), [4] gene expression and specific KRAS mutation type and [5]

gene expression, KRAS mutation status and the interaction between them (Panel A in S2 Fig).

For gene expression, in order to select genes that are differentially expressed in tumors and

avoid genes that are cell-line specific, we only included genes whose expression had variations

(standard deviation >0.5 in log2 normalized gene expression) in the lung adenocarcinoma

(LUAD), pancreatic adenocarcinoma (PDAC), and colorectal cancer (CORE) mRNA datasets

from The Cancer Genome Atlas (TCGA) [22,29–31]. The feature set 5 with “KRAS mutation

interaction” had the highest AUC at 0.94 (shown as a black dotted line in S2A Fig) when set-

ting the α at 0.3 and the number of features at 80, while the feature set 3 with “gene expression

and KRAS mutation status” had the second highest AUC at 0.93 when using 20 features at α =

0.9 (Panel A in S2 Fig). We selected the feature set with “gene expression and KRAS mutation

status” as our final model because of the minimal performance difference (i.e., AUC = 0.94 vs.

0.93) and the smaller number of features required. We named this final model as “K20”, which

includes the gene expression of 19 genes and the mutation status of KRAS. Panel B in S2 Fig

shows the AUC comparison among all feature sets with a small number of features. Feature set

4 (“gene expression with specific KRAS mutation type”) performed similarly to feature set 3

and had only subtle feature differences. When applying the K20 model to the whole dataset, it

had an AUC at 0.96, which is an improvement upon the KRAS mutation status only model

(AUC = 0.85) (Fig 1B). The performance improvement was seen in the validation set as well

(Panel C in S2 Fig). Fig 1C shows the weight of all 20 features included in the final model.

While KRAS mutation status is a binary variable (KRAS wild-type = 0, KRAS-mutant = 1), the

rest of the features are based on gene expression (RPKM on log2 scale). Importantly, aside

from KRAS mutational status, we found that KRAS expression itself played the strongest role

in predicting KRAS dependency (Fig 1C). Indeed, for KRAS WT cell lines, higher KRAS

expression was significantly associated with increased KRAS dependency, and we see a similar

trend for KRAS-mutant cell lines (Panel C in S3 Fig). High KRAS expression is oncogenic by

nature [32] and generally correlates with poor prognosis, and some clinical studies have

assessed the differential impact of KRAS expression over KRAS mutation in certain cancers.

Increased KRAS amplification, as opposed to KRAS mutations, can lead to increased meta-

static endometrial disease [33]. In colorectal cancer, independent of the presence of KRAS

mutations, KRAS copy number gain and amplification can also be a negative predictor to anti-

EGFR treatment [34,35]. Previous modeling of KRAS dependency found that KRAS gene copy

number and protein expression were correlated with an increased dependency on the onco-

gene [16]. Fig 1D shows a heatmap of all 20 features in the K20 prediction model. Cell lines

were sorted by DEMETER2 KRAS dependency scores. We found that higher expression in

CCRL2, NR1l2, CCDC170, ANO1, SDR16C5 and KRAS occur more frequently in KRAS-

dependent cell lines, while expression in genes such as SIRPA, MRAS, LRP12, EVC and

APBA2 are higher in KRAS-independent cell lines. Several genes, such as STK38L and

SDR16C5, were previously shown to correlate with oncogenic KRAS [36,37], and CCRL2

expression on cells within the TME is known to suppress KRAS-mediated tumor progression

[38].

External validation of the K20 model

Upon sorting the cell lines by K20 prediction scores, which represent predicted KRAS depen-

dency based on our model, we selected a prediction score of 1.477 as a cutoff with the maximal
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sum of sensitivity plus specificity. Fig 2A shows the original DEMETER score and Fig 2B

shows the samples sorted by K20 prediction scores. Except for five cell lines, all sensitive and

intermediate cell lines were predicted to be non-refractory, giving an AUC score of 0.94 in the

validation set (Panel B in S2 Fig). The model prediction scores are highly correlated with the

DEMETER2 KRAS dependency scores (Fig 2C), showing that cell lines with low prediction

scores are sensitive to KRAS depletion and cell lines with high prediction scores are resistant

to KRAS depletion, while cell lines with prediction scores in between are likely to have a partial

response. To validate the predictive performance of the K20 model, we first performed in vitro
RNAi-mediated dose-response assays and assessed comparative cell viability following KRAS

knockdown. We selected several cell lines that were derived from LUAD, PDAC, or CORE

tumors, of which one cell line was KRAS WT and the other cell lines represented unique

KRAS mutations in codons 12 and 13. Based on our K20 model, MIA-PaCa-2 (G12C mutant

pancreatic cancer), H441 (G12V mutant lung cancer), and SK-CO-1 (G12V mutant colon/

colorectal cancer) were selected from the sensitive cluster, A427 (G12D mutant lung cancer),

HCT116 (G13D mutant colorectal cancer), H727 (G12V mutant lung cancer), and KE39

(KRAS WT gastric adenocarcinoma) were selected from the intermediate cluster, and

NCI-H2030 (H2030) (G12C mutant lung cancer) and NCI-H1355 (H1355) (G13C mutant

lung cancer) were selected from the refractory cluster. The cell lines were transfected using a

10-point concentration gradient with two different pan-KRAS siRNAs that were previously

characterized to show potent KRAS knockdown (Panel A in S3 Fig) [39]. Using metabolic

activity as a readout for cell viability, we found that each KRAS siRNA produced similar data

that followed the general clustering trend predicted by the K20 model (Fig 2D, Panel A in S3

Fig). For example, MIA-PaCa2 and SK-CO-1 produced low GI50s at 0.94 and 1.76 nM, respec-

tively, upon treatment with KRAS siRNA #1, indicating a higher sensitivity to KRAS knock-

down, whereas H2030 and H1355 were about 5 to 7-fold more refractory to KRAS silencing

with GI50s at 5.39 and 6.67 nM, respectively. Interestingly, KE39 was shown to be quite sensi-

tive to KRAS knockdown despite being KRAS WT. Our K20 prediction score for this line is

largely driven by its high KRAS expression levels. Together, these findings show that the K20

model can predict a range of KRAS dependencies across several KRAS mutations, various can-

cer subtypes, and even dependencies of cancers that are KRAS WT. To evaluate an external

dataset, we compared K20 prediction scores with GI50s from a panel of KRAS G12C-mutant

lung cancer cell lines treated with the G12C inhibitor, ARS1620 [40]. This dataset was particu-

larly useful since it included 12 cell lines with a large dynamic range of KRAS dependencies.

We found that the K20 prediction scores were highly correlated with the GI50 readout (Fig

2E), further supporting the predictive capabilities of the K20 model.

Molecular features of predicted KRAS-Dependency in human tumors

We then applied the K20 model to TCGA-PANCAN. As expected, we found that patients with

KRAS mutations from all cancer types had significantly lower prediction scores, indicating

higher KRAS dependency (Fig 3A), which was also seen in all CCLE tissue types (Panel D in

S3 Fig). In all cancer patients with KRAS mutations, we found gastrointestinal (GI) tract can-

cers: esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), colon adenocarci-

noma (COAD), rectum adenocarcinoma (READ) and pancreatic adenocarcinoma (PAAD),

had the lowest K20 prediction scores. Interestingly, many KRAS wild-type GI tract cancer

patients also had low K20 prediction scores, which we suspect may be due to false negatives in

KRAS mutation detection or the presence of mutations in genes like NRAS or BRAF which

may phenocopy oncogenic KRAS. Melanoma patients were predicted to be the most resistant

cancer type to KRAS dependency, regardless of KRAS mutation status. Fig 3B shows a

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 6 / 20

https://doi.org/10.1371/journal.pcbi.1011095


heatmap of the gene expression of the 19 genes in K20 model and KRAS mutation status for

each patient sorted by K20 prediction scores.

It is possible that gene expression levels in cell lines cannot capture changes caused by the

tumor microenvironment. Therefore, we used the AJIVE (Angle-based Joint and Individual

Variation Explained) method [41] to measure the joint variation shared between tissues (i.e.

TCGA) and cell lines (i.e. CCLE) and calculated the CCLE joint statistics [42]. Genes with

higher CCLE joint statistics represent improved translation from cell line to TCGA data. All

19 genes in the K20 model passed a 5% FDR threshold, showing increased joint-behavior with

TCGA over background (Figs 3C and S4), which indicates that the signature may translate

well to actual tumor biopsies.

Because LUAD, CORE and PDAC have some of the highest KRAS mutation frequencies of

all solid tumors, we specifically tested the association between their K20 prediction scores and

tumor characteristics. In CORE cancers, we found that 3 out of the 93 tumors with KRAS

mutations were predicted to be resistant to KRAS depletion (Panel A in S5 Fig). These patient

tumors had lower KRAS gene expression in comparison to KRAS-mutant tumors that were

predicted to be sensitive (p = 0.0035). To see if molecular subtypes had differential KRAS

dependencies, the prediction scores were evaluated across TCGA mRNA expression subtypes,

Fig 2. Independent validation of K20 model. Validation of K20 model was conducted in internal validation set and two external sets.

Waterfall plots of KRAS dependency scores from DEMETER2 in (A) and of K20 prediction scores in (B). Cell lines were sorted from the

lowest K20 prediction scores to the highest prediction scores from left to right (red: score< threshold, black score� threshold). (C)

Scatter plot of KRAS DEMETER2 scores (in x-axis) vs. K20 prediction scores (in y-axis) in all cell lines shows high correction (Pearson

r = 0.75, p<0.0001). (D) Representative dose-response curves for six different cancer cell lines treated for six days with two KRAS-

targeting siRNAs. CellTiter Glo was used to measure cell viability. Fitted curves generated by GraphPad Prism. (E) Scatter plot of K20

prediction scores (in x-axis) vs. GI50 scores of ARS1620 (in y-axis) in 12 lung cancer cell lines shows high correlation (Pearson r = 0.76,

p = 0.004) in a public dataset. Red, purple and blue represent sensitive, intermediate and refractory, respectively in A, C, and D.

https://doi.org/10.1371/journal.pcbi.1011095.g002
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methylation subtypes, MSI status, and hypermutation status [30]. We found patients in the

invasive gene expression subtype were predicted to be more sensitive to KRAS loss regardless

of their KRAS mutation status (Panel B in S5 Fig). Additionally, we also compare the K20 pre-

diction scores with the Consensus Molecular Subtypes from Guinney et al. [22]. We found

that patients with the CMS4, or mesenchymal, subtype were predicted to have more refractory

tumors, while CMS3, or metabolic, subtype tumors were predicted to be more sensitive (Panel

F in S5 Fig).

In PDAC patients, almost all patients had KRAS alterations (90.7%), but the prediction

scores fell within a large range (-10 to -1) (Fig 4A). Except for one tumor, all tumors with

KRAS mutations had lower K20 prediction scores than KRAS WT tumors (Fig 4A). Tumors

in the progenitor subtype [31], or those with copy number aberrations, were predicted to be

the most sensitive to KRAS inhibition (Fig 4B and 4C). While nearly all tumors were predicted

Fig 3. Applying the K20 predictive model to TCGA-PANCAN (14 cancer types). (A) Box plot of K20 prediction scores in 14 TCGA

solid tumor types separated by tissue type (x-axis) and KRAS mutation status. Each sample is represented as a dot. (B) Heatmap of the

gene expression of the 19 model genes. Disease type is shown in the top color bar. KRAS, NRAS, HRAS, and BRAF mutation statuses are

shown in the second, third, fourth, and fifth color bars respectively. K20 model prediction scores are shown in the sixth color bar. (C)

Box plots of CCLE joint statistics in K20 model genes versus background genes. Wilcoxon rank-sum test was used for comparisons.

(****) = p<0.0001, (***) = p<0.001, (**) = p<0.01, (*) = p<0.05. BRCA: Breast invasive carcinoma, COAD: Colon adenocarcinoma,

ESCA: Esophageal carcinoma, KIRC: Kidney renal clear cell carcinoma, KIRP: Kidney renal papillary cell carcinoma, LIHC: Liver

hepatocellular carcinoma, LUAD: Lung adenocarcinoma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic adenocarcinoma,

PRAD: Prostate adenocarcinoma, READ: Rectum adenocarcinoma, SKCM: Skin Cutaneous Melanoma, STAD: Stomach

adenocarcinoma, UCEC: Uterine Corpus Endometrial Carcinoma.

https://doi.org/10.1371/journal.pcbi.1011095.g003
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to be highly dependent on KRAS, tumors in the progenitor and squamous subtypes had signif-

icantly lower dependency scores compared to tumors in immunogenic or aberrantly differen-

tiated endocrine exocrine (ADEX) subtypes (Fig 4B). Interestingly, the ADEX subtype is

typically associated with KRAS activation, whereas the quasi-mesenchymal squamous cluster

is driven by p53 and KDM6A mutations [43] and the progenitor tumors express genes found

in early pancreatic development [31]. Pancreatic cancer patients with non-aneuploid copy

number were predicted to be less sensitive to KRAS loss than patients with copy number aber-

ration (Fig 4C). This may be because of the chromosomal instability introduced by aneuploidy,

which can be driven by KRAS mutations and easily perturbed [44]. Because only a small num-

ber of the PDAC patients were KRAS WT, the prediction score differences seen in Bailey

expression subtypes and copy number clusters were primarily driven by patients with KRAS

mutations (Panels A+B in S6 Fig). We did not find K20 prediction score differences between

Moffitt subtypes (i.e., Basal vs. Classical, Panel D in S6 Fig) [45]. The K20 model predicted

Fig 4. Apply K20 predictive model to TCGA pancreatic adenocarcinoma (PDAC) patients. The K20 model

predicts that most of the pancreatic adenocarcinoma patients with KRAS mutation are not KRAS-refractory. The

model prediction scores are associated with Bailey clusters and copy number. (A) Heatmap showing gene expression of

19 classifier genes and KRAS mutation status and types in TCGA pancreatic adenocarcinoma patients. Samples were

sorted by prediction scores (left to right: lowest to highest). (B-C) Violin plots of K20 prediction scores by (B) Bailey

cluster (progenitor vs ADEX, p =<0.0001; progenitor vs immunogenic, p =<0.0001; squamous vs ADEX, p = 0.0002;

squamous vs immunogenic, p<0.0001), and (C) copy number (low vs non-aneuploid, p = 0.0002; high vs non-

aneuploid, p<0.0001; low vs high, p = 0.0122). Wilcoxon rank-sum test was used for comparisons. (****) = p<0.0001,

(***) = p<0.001.

https://doi.org/10.1371/journal.pcbi.1011095.g004

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 9 / 20

https://doi.org/10.1371/journal.pcbi.1011095.g004
https://doi.org/10.1371/journal.pcbi.1011095


scores were not associated with subtypes defined by lncRNA, methylation, RPPA or micro-

RNA clusters (Panels C, E-G in S6 Fig).

In LUAD patients, almost all KRAS G12-mutant cancer patients were predicted to be

KRAS dependent, albeit along a spectrum (Fig 5A and 5B), and we found that the prediction

scores were only correlated with some TCGA subtypes in the KRAS WT tumors [29]. KRAS

WT tumors in the proximal-proliferative expression subtype (which has a high incidence of

STK11 mutations) were predicted to be more sensitive than the other two subtypes, and this

trend was seen in KRAS-mutant tumors as well (Fig 5C). All the KRAS-mutant tumors were

classified within the oncogene positive group, except one. About 45% of the KRAS WT tumors

were oncogene positive, but they were predicted to be less sensitive to KRAS loss than KRAS

WT tumors in the oncogene negative group (Fig 5D). This KRAS resistance in oncogene posi-

tive tumors without KRAS mutations is probably due to different driver mutations found in

Fig 5. Apply K20 predictive model to TCGA lung adenocarcinoma cancer (LUAD) patients. K20 model predicts

that most of the lung adenocarcinoma patients with KRAS mutation are KRAS-sensitive and some might be

intermediate. The model prediction scores are associated with TCGA expression subtypes, STK11 mutation status,

oncogene groups and transversion status. (A) Heatmap showing gene expression of 19 classifier genes and KRAS

mutation status and types in TCGA lung adenocarcinoma patients. Samples were sorted by prediction scores (left to

right: lowest to highest). (B-D) Violin plots of K20 prediction scores by (B) KRAS mutation types (not present vs

present for any mutation, p<0.0001), (C) expression subtypes (KRAS-wildtype (WT): proximal-proliferative vs

proximal-inflammatory, p = 0.0002; proximal-proliferative vs terminal respiratory unit, p<0.0001), and (D) oncogene

groups (WT: negative vs positive, p = 0.0143). Wilcoxon rank-sum test was used for comparisons. (****) = p<0.0001,

(***) = p<0.001, (*) = p<0.05.

https://doi.org/10.1371/journal.pcbi.1011095.g005
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those tumors, such as EGFR and BRAF mutations. In lung cancer, mutations in p53 and

STK11 commonly co-occur with KRAS. However, our model did not predict KRAS depen-

dency differences by the presence or absence of an STK11 mutation or p53 mutation when

stratified by KRAS mutation status (Panels A+B in S7 Fig). More than 80% of KRAS-mutant

tumors were in the transversion-high classification (Panel C in S7 Fig), while the transversion-

low class were often enriched with EGFR-mutant tumors [29]. However, we did not find dif-

ferences in prediction scores based on transversion classification within KRAS WT or mutant

tumors (Panel C in S7 Fig).

Discussion

Oncogenic drivers in cancer, such as KRAS, can be targeted by potent inhibitors and result in

remarkable therapeutic benefit. However, defining oncogene dependency can be complex and

context dependent. The heterogeneity of KRAS-driven disease across cancer types can obscure

patterns of dependency. While mutant and hyperactive KRAS has been shown to induce and

sustain cancer growth, other cellular programs can amplify these effects and provide alterna-

tive routes for cell survival upon KRAS inhibition. Using data from DEMETER2 and Project

Achilles, we have developed a model with 20 features (the K20 model) to predict the KRAS

dependency of carcinomas. While KRAS dependency may not be on a linear scale, we have

defined three clusters of dependency that may help characterize and discriminate differences

across various cancer subtypes and even genotypes.

The signaling networks of KRAS with other important pathways in cancer cells are well-

documented, however the mechanisms of KRAS dependency remain poorly understood. The

features within our K20 model offer a novel look into the genetic landscape of KRAS-depen-

dent cancer cells. Some features have been directly or indirectly linked to KRAS in promoting

tumor progression. For example, loss of the STK38L kinase, which can be co-amplified with

KRAS, has been shown to result in decreased cell viability in KRAS-dependent pancreatic cells

[36]. SDR16C5 has been found to be upregulated in KRAS-mutant rectal tumors compared to

KRAS wild-type [37], and increased SIRPA may be indirectly linked to mutant KRAS through

the overexpression of the EZH2 polycomb complex [46]. In contrast, ANO1 has been linked to

MAPK signaling in a RAS-independent manner [47], and mutations in LRP12 have been

linked with oncogenic KRAS [48]. Other features within our K20 model have also been shown

to downregulate KRAS or compensate for its loss. For example, MICAL3 negatively correlates

with KRAS dependency in our model and is frequently enriched in non-smoker related lung

cancer [49]. Studies on PRKD3 have revealed its role in driving ERK/c-MYC-facilitated

tumorigenesis in a KRAS-independent manner [50,51], suggesting a compensatory mecha-

nism following loss of KRAS. Similarly, FLNA prevents KRAS-mutant lung metastasis and is

often downregulated in KRAS-mutant tumors [52,53]. Evidence that PFKFB3 promotes

tumorigenesis through hyperactivation of metabolism and can be targeted therapeutically to

decrease the viability of KRAS-mutant pancreatic cells seems contradictory to the negative

influence PFKFBB3 has on KRAS dependency in our model. However, this relationship may

instead offer insight into a metabolic mechanism of resistance in KRAS-mutant cancers that is

promoting survival independently of KRAS [54,55]. Future studies into specific features and

related mechanisms within our model may further elucidate targetable vulnerabilities that can

synergize with KRAS inhibitors and/or overcome mechanisms of resistance.

Our K20 predictive model was validated using several in vitro dose-response studies, which

show clear differences in response, especially between the sensitive and refractory groups irre-

spective of mutation status. Our RNAi data with the lung H2030 cell line (KRAS G12C

mutant) shows that identification of a KRAS mutation is not sufficient to justify treatment
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with KRAS G12C inhibitors. Our external validation of the K20 model across a larger panel of

lung KRAS G12C mutant cell lines accurately predicted the dependency of inhibition with

ARS1620, which revealed a clear spectrum of KRAS dependency. These findings underscore

the need for a predictive tool to a priori predict a tumor response to direct KRAS inhibition.

Evaluating the K20 model across lung, colorectal and pancreatic cancers within the TCGA

datasets revealed several specific molecular subsets that have increased KRAS dependency,

such as the progenitor and squamous clusters, as well as copy number-high pancreatic cancers

[31]. In colorectal cancer, our model predicted that CMS4 tumors were not dependent on

KRAS. These tumors are characterized by stromal invasion, upregulation of genes involved in

epithelial mesenchymal transition, and activation of transforming growth factor β activation

which can lead to poor prognosis [22]. Previous studies have shown that these tumors are

resistant to MEK inhibitor treatment and may respond to combination therapy with SRC

inhibitors [56]. In contrast, the CMS3 KRAS-mutant tumors, which have been previously

found to have high KRAS expression, are more dependent on the oncogene [22]. While not

much is known about the invasive gene expression subtype in colorectal cancer, clinical studies

of the CpG Island Methylator Phenotype-Low (CIMP-L) subtype show that patients with this

gene expression profile exhibit more KRAS mutations and show better prognosis than patients

with the CIMP-high (CIMP-H) subtype [57,58]. The CIMP-L subtype consists of tumors with

low DNA hypermethylation and CpG islands in unique genomic sites that typically lead to

metabolic dysregulation. Their dependence on KRAS may be linked to their metabolic

demands and may be exploited with MAPK-targeting therapeutics, including KRAS-specific

inhibitors. Interestingly, we found that STK11 mutation status in lung cancer did not correlate

with increased dependency on KRAS. Previous studies have indicated that co-occurring KRAS

and STK11 mutations can lead to worse prognosis in NSCLC patients [59], and a recent study

using G12C inhibitor sotorasib found that 50% of patients with co-occurring STK11

responded to KRAS inhibition, however those findings were non-significant and hypothesis-

forming [60]. Ongoing clinical trials that combine G12C inhibition with immunotherapy may

not be effective as a combination therapy in patients with co-occurring STK11 mutations, who

are often non-responsive to checkpoint inhibition [61]. In contrast, clinical studies have not

shown a significant difference in response rates to KRAS G12C inhibitors with co-occurring

p53 mutations, consistent with our K20 model prediction. Given the recent clinical success of

KRAS G12C inhibitors, and with broader classes of KRAS inhibitors on the horizon, it is

imperative that simple, yet robust predictive biomarker models be developed that can best

define the patients who are most likely to benefit from these novel compounds. Notably, direct

KRAS G12C inhibitors have only gained approval in lung cancer in the second-line setting, in

part due to the modest responses and duration of response achieved. Hopefully, better predic-

tive models of KRAS dependency, beyond the presence of a KRAS mutation, will enable selec-

tion of patients most likely to benefit from these new classes of molecules early on in their

care.

Materials/Methods

Cell line data

DEMETER2 version 5 data was downloaded from DEMETER2 figshare website (https://

figshare.com/articles/dataset/DEMETER2_data/). Only cell lines/disease in the following solid

tissues were included: "breast", "colorectal", "esophagus", "gastric", "kidney", "liver", "lung",

"ovary", "pancreas", "prostate", "skin", "uterus". Activating mutations in these cell lines include

the following: KRAS—A146A, A146T, R164, T74P and any mutations at G12, G13, Q61;

BRAF—L597R, V226M, G466V, R682Q, G464E, N581Y, G464V, G469A, L597V, G596R and
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any mutations at V600; NRAS—A146V, E132K and any mutations at G12, G13, Q61; HRAS—

T58T and any mutations at G12, G13, Q61.

K-mean clustering (k = 3) was applied to K20 dependency scores to determine the KRAS

dependency group of the cell lines, like described in E. McDonald et. al [25]. K20 dependency

score range of”sensitive", "intermediate", and "refractory" groups were: -2.3 to -1.2, -1.1 to -0.4

and -0.4 to 0.3 respectively. CCLE mutation data was downloaded from CCLE website (version

18Q1).

TCGA data

TCGA gene expression (RSEM_normalized_log2) for PANCAN was downloaded from

https://gdc.cancer.gov/about-data/publications/pancanatlas. The “EBPlusPlusAdjustPAN-

CAN_ IlluminaHiSeq_RNASeqV2.geneExp.tsv” file was used. The “mc3.v0.2.8.PUBLIC.maf”

file was used to extract KRAS mutation status. We used tumor samples with both mutation

and expression profiles for downstream analysis. Only the 14 cancer types used in K20 model

training were included in the analysis, which includes KIRC, KIRP, SKCM, LIHC, PRAD, OV,

BRCA, ESCA, UCEC, LUAD, STAD, COAD, READ, and PAAD. Genomic subtype data for

LUAD [29], COAD+READ [22,30], and PDAC [31] were taken from the respective TCGA

annotations.

Apply K20 model to TCGA

Because there is a difference in gene expression between CCLE cancer cell lines and TCGA

human tissues, we rescaled the K20 prediction scores of TCGA-PANCAN samples to align

with CCLE cell lines so that the adjusted TCGA-PANCAN prediction scores have the same

minimal and maximal values as CCLE prediction scores (formula shown below). The rescaling

was done using the 14 TCGA-PANCAN diseases that were used in the K20 model building.

K20TCGA� adjusted
i ¼ ðK20TCGA

i � min
i¼1� n
ðK20TCGA

i ÞÞ � C þ min
i¼1� m
ðK20CCLE

i Þ

;where C ¼
maxi¼1� mðK20CCLE

i Þ � mini¼1� mðK20CCLE
i Þ

maxi¼1� nðK20TCGA
i Þ � mini¼1� nðK20TCGA

i Þ

K20 model building

Cell lines were divided into training (67%) and testing (33%) sets balancing for the tissue types

and dependency groups. The training set was further stratified into 100 iterations of Monte-

Carlo cross validation (MCCV) with 67% training and 33% testing to select the best tuning

parameters, α and λ. The α parameter controls the percentage of ridge (L1 regularization) and

lasso (L2 regularization). α is the percentage of ridge regularization, so when α is zero, it does

only ridge regression, and when α is 1, it does lasso regression. λ is the shrinkage parameter.

The larger the λ is, the more shrinkage it has on the coefficients. Binomial models (refractory

vs. non-refractory) were fitted to the MCCV training set using Elastic-Net (R package: glmnet).

Five different feature sets were evaluated: [1] gene expression of genes with standard deviation

(SD) larger than 0.5 in TCGA-LUAD, COAD and PDAC, [2] gene expression from [1] and

mutation status of all genes, [3] gene expression from [1] and mutation status of KRAS, [4]

gene expression from [1] and mutation type of KRAS, and [5] gene expression from [1] and

interaction with KRAS mutation status, where expression value is multiplied to the KRAS

mutation status (0 for wild type and 1 for mutant). Elastic-Net parameters were selected to

maximize the AUC evaluated in the MCCV test sets. Parameters with the best performance

were then used to fit our final model against the complete training set. In the final model, a
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total of 20 features were selected, including KRAS mutation status. Selected features and their

coefficients are listed in S1 Table. Prediction score is the dot product of the gene expression

value and their coefficients.

The final model was then applied to all 444 cell lines and TCGA-LUAD, CORE and PDAC

datasets. Heatmaps showing the model gene expression and mutation status were plotted

using R package ComplexHeatmap. K20 prediction scores were divided into 3 groups via k-

mean clustering (k = 3). Predicted K20 scores for the three TCGA cancer types were also plot-

ted as violin plots by their genomic subtypes.

TCGA and CCLE Joint statistic calculation

TCGA and CCLE datasets were integrated using the joint dimension reduction method,

AJIVE [41]. AJIVE decomposes each input dataset into joint J and individual I matrices con-

taining shared- or independently- behaving variation, respectively. A joint statistic represent-

ing the “joint behavior” for each gene g within a dataset can then be calculated as the log-ratio

of the gene’s variance σ^2 between joint and individual matrices (formula shown below).

logð
maxðs2

Jg
;sÞ

maxðs2
Ig
;sÞÞ, where s2

Jg
is variance of gene in joint, s2

Ig
is variance of gene in individual, and

s is shrinkage threshold.

In this analysis, a shrinkage threshold s of 0.5 was used to set a minimum variance threshold

for each gene. This prevents potential artifacts from low variance genes. A “CCLE joint statis-

tic” was calculated for each gene using the decomposed CCLE matrices with higher values rep-

resenting improved translation from cell line to TCGA data. Thus, we assessed the significance

of the K20 CCLE Joint Statistics using the permutation approach proposed by Tusher, Tibshir-

ani and Chu [62] to calculate the false discovery rate (FDR).

Cells and culture conditions

Cell lines were obtained from the ATCC and tested for Mycoplasma. MIA PaCa-2 (pancreatic

carcinoma) cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) media (Gibco)

with 10% Fetal Bovine Serum (FBS) (Avantor) and 1% Penicillin–Streptomycin (P-S) (Sigma)

antibiotic. SK-CO-1 (colorectal adenocarcinoma) and A-427 (lung carcinoma) cells were

grown in Modified Eagle’s Medium (MEM) media (Gibco) with 10% FBS and 1% P-S antibi-

otic. H727 (lung non-small cell carcinoma), H441 (lung adenocarcinoma), H1355 (lung ade-

nocarcinoma), H2030 (lung adenocarcinoma), and KE39 (gastric cancer, kindly provided by

the Bass lab) cells were grown in RPMI-1640 media (Gibco) with 10% FBS and 1% P-S antibi-

otic. HCT116 (colorectal carcinoma) were grown in McCoy’s 5A medium (Gibco) with 10%

FBS and 1% P-S antibiotic. All cell lines were grown in T75 flasks (Genessee Scientific) at 37˚C

with 5% CO2/95% air.

siRNA transfections

All siRNA transfection experiments were completed using Lipofectamine RNAiMAX (Life

Technologies) following manufacturer instructions. The sequences of the siRNA oligos are

below and as previously described [39].

Negative control: Sense-UUCUCCGAACGUGUCACGUdTdT

Anti-sense-ACGUGACACGUUCGGAGAAdTdT

KRAS sequence #1: Sense-GUCUCUUGGAUAUUCUCGA,

Anti-sense-UCGAGAAUAUCCAAGAGAC

KRAS sequence #2: Sense-CAGCUAAUUCAGAAUCAUU,

Anti-sense-AAUGAUUCUGAAUUAGCUG
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In vitro validation studies

Cell viability in response to KRAS siRNA treatment was evaluated with the CellTiter-Glo 2.0

Cell Viability Assay, which quantifies ATP, using the manufacturer’s protocol (Promega). Fol-

lowing trypsinization, cells were resuspended in antibiotic-free culture media and 150uls were

added to opaque, flat bottom white 96-well plates (PerkinElmer). Cells were counted on a

hemocytometer using a Trypan Blue dye (Sigma) and seeded as follows: MIA PaCa-2 cells

were seeded at 2,000 cells/well, H1355, H2030 and KE39 cells were seeded at 4,000 cells/well,

A-427 cells were seeded at 5,000 cells/well, and SK-CO-1 cells were seeded at 6,000 cells/well.

The KRAS siRNAs were suspended in serum-free media with Lipofectamine RNAiMAX and

were reverse transfected at 50uls per well in triplicate starting at 20nM and progressing

through a 10-point serial dilution until a final dose of 0.04nM. Plates were sealed with Breathe-

Easier sealing films (Electron Microscopy Sciences) to minimize edge evaporation and incu-

bated in culture conditions for six days. The endpoint was experimentally determined as the

optimal timepoint for producing robust curves consistently across all cell lines and is consis-

tent with experimental conditions in the field. For viability readouts, 100 uls of media was

removed from each well and an equal volume of CellTiter Glo 2.0 (CTG) Reagent was added.

Luminescence was measured at 530 nm excitation and 590 nm emission on a Synergy2 fluores-

cent plate reader (BioTek). Data was analyzed in GraphPad Prism. A negative control siRNA

was tested on each cell line and showed no effects on KRAS knockdown or cell viability, there-

fore we excluded it from figures.

Supporting information

S1 Fig. DEMETER2 KRAS dependency score distribution and cell line disease types with

KRAS mutations. (A) Density plot of KRAS dependency score in all 712 cancer cell lines

(black line) and in 126 KRAS-mutant lines (red line), p-value = 6.71e-30 (Wilcoxon rank sum

test). (B) Waterfall plot of KRAS dependency scores, color-coded by KRAS mutation status.

Red and black color bars represent KRAS-mutant and wild-type cells, respectively. (C) Water-

fall plot of KRAS dependency scores, color-coded by KRAS mutation k-mean cluster (k = 3).

Red, purple and blue color bars represent sensitive, intermediate, and refractory clusters,

respectively. (D) Waterfall plot of KRAS dependency scores in KRAS-mutant cells only. (E)

Bar plot of disease types in 126 KRAS-mutant cell lines.

(TIF)

S2 Fig. ElasticNet model parameter tuning and feature set selection. (A) Performance com-

parisons in the training set among the five different feature sets and in different alpha (0.1 to

1) were shown in each plot for AUC versus the number of features. Different colors of lines

represent the five different feature sets: gene expression only in black, gene expression and

mutation in green, gene expression and KRAS mutation status in red, gene expression and

KRAS mutation type in orange and gene expression, KRAS mutation and interaction term

between them in blue. The black dotted line is at the highest AUC = 0.94 for easy comparison

among plots. (B) Boxplot of AUC comparison at alpha = 0.9 and number of features between

15 to 25 during the MCCV. The black dotted line is at the highest AUC = 0.94. (C) Receiver

operating characteristic (ROC) curve comparing the model performance between the K20

model (in red) and the KRAS mutation only model (in blue) in the validation set.

(TIF)

S3 Fig. KRAS expression in CCLE cell lines and K20 prediction scores across numerous

cancer types from CCLE. (A) Relative KRAS expression by RT-qPCR in HCT116 cells follow-

ing treatment with the control siRNA, KRAS siRNA #1, and KRAS siRNA #2 at 20nM for 24
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and 48 hrs. Error bars indicate SEM. (B) Scatter plot of K20 prediction scores (in x-axis) vs.

GI50 scores of the two KRAS siRNAs treated in nine different cancer cell lines (in y-axis)

shows correlation (Spearman r = 0.57, p = 0.02). (C) Box plot of KRAS expression by KRAS

dependency class and mutation status. Wilcoxon p-values were shown for two group compari-

sons. (D) Box plot of K20 prediction scores in 12 CCLE cancer types overlapped with the 14

TCGA solid tumors, separated by disease type and KRAS mutation status. Each sample is rep-

resented as a dot.

(TIF)

S4 Fig. Comparison of observed CCLE and TCGA joint statistics. The observed TCGA and

CCLE joint statistics of all genes are shown along the x- and y-axes, respectively. The 19 genes

included in the K20 model are shown in blue, while the rest of the genes are shown in grey.

The FDR threshold was set to 5% for CCLE joint statistic, which was equal to 0.106 here

(shown as a red dotted line).

(TIF)

S5 Fig. Apply K20 predictive model to TCGA colon and rectum cancer (CORE) patients.

K20 model predicts that most of the colorectal cancer patients with KRAS mutation are

KRAS-sensitive with some exceptions and the model prediction scores are associated with sev-

eral TCGA expression subtypes. (A) Heatmap showing gene expression of 19 classifier genes

and KRAS mutation status and types in TCGA colorectal cancer patients. Samples were sorted

by prediction scores (left to right: lowest to highest). (B-E) Violin plots of K20 model predic-

tion scores by (B) expression subtypes (KRAS-wildtype (WT): invasive vs CIN, p = 0.0228;

invasive vs MSI/CIMP, p = 0.0097; KRAS-mutant (MUT): invasive vs CIN, p = 0.0022), (C)

MSI status, (D) methylation status, (E) hypermutation status, and (F) CMS status (KRAS-wild-

type (WT): CMS1 vs CMS4, p<0.0001; CMS2 vs CMS4, p<0.0001; CMS3 vs CMS4,

p = 0.0004; KRAS-mutant (MUT): CMS2 vs CMS4, p = 0.0262; CMS3 vs CMS4, p = 0.0003;

CMS2 vs CMS3, p = 0.0062). Wilcoxon rank-sum test was used for comparisons. (***) =

p<0.001, (**) = p<0.01, (*) = p<0.05

(TIF)

S6 Fig. Apply K20 predictive model to TCGA pancreatic ductal adenocarcinoma (PDAC)

patients. Violin plots of K20 prediction score split into KRAS-wildtype (WT) and KRAS-

mutant (MUT) groups by (A) Bailey cluster (MUT: progenitor vs ADEX, p<0.0001; squamous

vs ADEX, p = 0.0046, progenitor vs immunogenic, p<0.0001; squamous vs immunogenic,

p = 0.0003; squamous vs progenitor, p = 0.0107) and (B) copy number cluster (MUT: low vs

non-aneuploid, p<0.0001; high vs non-aneuploid, p<0.0001; low vs high, p = 0.0051). Addi-

tional violin plots of K20 prediction scores by (C) lncRNA cluster, (D) Moffitt cluster, (E)

methylation cluster, (F) RPPA, and (G) miRNA cluster. Wilcoxon rank-sum test was used for

comparisons. (****) = p<0.0001, (**) = p<0.01

(TIF)

S7 Fig. Apply K20 predictive model to TCGA lung adenocarcinoma cancer (LUAD)

patients. Additional violin plots of K20 prediction scores split into KRAS-wildtype (WT) and

KRAS-mutant (MUT) groups by (A) STK11 mutation status, (B) p53 mutation status, and (C)

transversion status. Wilcoxon rank-sum test was used for comparisons.

(TIF)

S1 Table. Selected gene features and coefficients.

(XLSX)

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011095.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011095.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011095.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011095.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011095.s008
https://doi.org/10.1371/journal.pcbi.1011095


Acknowledgments

The authors acknowledge members of the Pecot lab for helpful discussions and feedback. The

authors also acknowledge the support from the Bioinformatics Shared Resource at UNC Line-

berger Comprehensive Cancer Center.

Author Contributions

Conceptualization: Joel S. Parker, Chad V. Pecot.

Data curation: Yihsuan S. Tsai, Joel S. Parker.

Formal analysis: Yihsuan S. Tsai.

Funding acquisition: Chad V. Pecot.

Investigation: Yihsuan S. Tsai, Yogitha S. Chareddy.

Methodology: Yihsuan S. Tsai, Yogitha S. Chareddy, Chad V. Pecot.

Resources: Chad V. Pecot.

Supervision: Chad V. Pecot.

Validation: Yihsuan S. Tsai, Yogitha S. Chareddy, Brandon A. Price.

Visualization: Yihsuan S. Tsai.

Writing – original draft: Yihsuan S. Tsai, Yogitha S. Chareddy, Chad V. Pecot.

Writing – review & editing: Yihsuan S. Tsai, Yogitha S. Chareddy, Brandon A. Price, Joel S.

Parker, Chad V. Pecot.

References
1. Fernandez-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011; 2

(3):344–58. https://doi.org/10.1177/1947601911411084 PMID: 21779504

2. Friday BB, Adjei AA. K-ras as a target for cancer therapy. Biochim Biophys Acta. 2005; 1756(2):127–

44. https://doi.org/10.1016/j.bbcan.2005.08.001 PMID: 16139957

3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74. https://

doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

4. Waters AM, Der CJ. KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold

Spring Harb Perspect Med. 2018; 8(9). https://doi.org/10.1101/cshperspect.a031435 PMID: 29229669

5. Han J, Liu Y, Yang S, Wu X, Li H, Wang Q. MEK inhibitors for the treatment of non-small cell lung can-

cer. J Hematol Oncol. 2021; 14(1):1. https://doi.org/10.1186/s13045-020-01025-7 PMID: 33402199

6. Subbiah V, Baik C, Kirkwood JM. Clinical Development of BRAF plus MEK Inhibitor Combinations.

Trends Cancer. 2020; 6(9):797–810. https://doi.org/10.1016/j.trecan.2020.05.009 PMID: 32540454

7. Dang CV, Reddy EP, Shokat KM, Soucek L. Drugging the ’undruggable’ cancer targets. Nat Rev Can-

cer. 2017; 17(8):502–8. https://doi.org/10.1038/nrc.2017.36 PMID: 28643779

8. Zeitouni D, Pylayeva-Gupta Y, Der CJ, Bryant KL. KRAS Mutant Pancreatic Cancer: No Lone Path to

an Effective Treatment. Cancers (Basel). 2016;8(4).

9. Papke B, Der CJ. Drugging RAS: Know the enemy. Science. 2017; 355(6330):1158–63. https://doi.org/

10.1126/science.aam7622 PMID: 28302824

10. Uras IZ, Moll HP, Casanova E. Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present

and Future. Int J Mol Sci. 2020; 21(12). https://doi.org/10.3390/ijms21124325 PMID: 32560574

11. Schirripa M, Nappo F, Cremolini C, Salvatore L, Rossini D, Bensi M, et al. KRAS G12C Metastatic Colo-

rectal Cancer: Specific Features of a New Emerging Target Population. Clin Colorectal Cancer. 2020;

19(3):219–25. https://doi.org/10.1016/j.clcc.2020.04.009 PMID: 32605718

12. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP

affinity and effector interactions. Nature. 2013; 503(7477):548–51. https://doi.org/10.1038/nature12796

PMID: 24256730

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 17 / 20

https://doi.org/10.1177/1947601911411084
http://www.ncbi.nlm.nih.gov/pubmed/21779504
https://doi.org/10.1016/j.bbcan.2005.08.001
http://www.ncbi.nlm.nih.gov/pubmed/16139957
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.1101/cshperspect.a031435
http://www.ncbi.nlm.nih.gov/pubmed/29229669
https://doi.org/10.1186/s13045-020-01025-7
http://www.ncbi.nlm.nih.gov/pubmed/33402199
https://doi.org/10.1016/j.trecan.2020.05.009
http://www.ncbi.nlm.nih.gov/pubmed/32540454
https://doi.org/10.1038/nrc.2017.36
http://www.ncbi.nlm.nih.gov/pubmed/28643779
https://doi.org/10.1126/science.aam7622
https://doi.org/10.1126/science.aam7622
http://www.ncbi.nlm.nih.gov/pubmed/28302824
https://doi.org/10.3390/ijms21124325
http://www.ncbi.nlm.nih.gov/pubmed/32560574
https://doi.org/10.1016/j.clcc.2020.04.009
http://www.ncbi.nlm.nih.gov/pubmed/32605718
https://doi.org/10.1038/nature12796
http://www.ncbi.nlm.nih.gov/pubmed/24256730
https://doi.org/10.1371/journal.pcbi.1011095


13. Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, et al. The KRAS(G12C) Inhibitor

MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Mod-

els and Patients. Cancer Discov. 2020; 10(1):54–71. https://doi.org/10.1158/2159-8290.CD-19-1167

PMID: 31658955

14. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG

510 drives anti-tumour immunity. Nature. 2019; 575(7781):217–23. https://doi.org/10.1038/s41586-

019-1694-1 PMID: 31666701

15. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRAS(G12C) Inhibition with

Sotorasib in Advanced Solid Tumors. N Engl J Med. 2020; 383(13):1207–17. https://doi.org/10.1056/

NEJMoa1917239 PMID: 32955176

16. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A gene expression signa-

ture associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell.

2009; 15(6):489–500. https://doi.org/10.1016/j.ccr.2009.03.022 PMID: 19477428

17. Peng DH, Kundu ST, Fradette JJ, Diao L, Tong P, Byers LA, et al. ZEB1 suppression sensitizes KRAS

mutant cancers to MEK inhibition by an IL17RD-dependent mechanism. Sci Transl Med. 2019; 11(483).

https://doi.org/10.1126/scitranslmed.aaq1238 PMID: 30867319

18. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables bypass of onco-

genic Kras addiction in pancreatic cancer. Cell. 2014; 158(1):185–97. https://doi.org/10.1016/j.cell.

2014.06.003 PMID: 24954535

19. Muzumdar MD, Chen P-Y, Dorans KJ, Chung KM, Bhutkar A, Hong E, et al. Survival of pancreatic can-

cer cells lacking KRAS function. Nature Communications. 2017; 8(1):1090. https://doi.org/10.1038/

s41467-017-00942-5 PMID: 29061961

20. Hou P, Kapoor A, Zhang Q, Li J, Wu CJ, Li J, et al. Tumor Microenvironment Remodeling Enables

Bypass of Oncogenic KRAS Dependency in Pancreatic Cancer. Cancer Discov. 2020; 10(7):1058–77.

https://doi.org/10.1158/2159-8290.CD-19-0597 PMID: 32341020

21. Way GP, Sanchez-Vega F, La K, Armenia J, Chatila WK, Luna A, et al. Machine Learning Detects Pan-

cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep. 2018; 23(1):172–80 e3. https://

doi.org/10.1016/j.celrep.2018.03.046 PMID: 29617658

22. Guinney J, Ferte C, Dry J, McEwen R, Manceau G, Kao KJ, et al. Modeling RAS phenotype in colorectal

cancer uncovers novel molecular traits of RAS dependency and improves prediction of response to tar-

geted agents in patients. Clin Cancer Res. 2014; 20(1):265–72. https://doi.org/10.1158/1078-0432.

CCR-13-1943 PMID: 24170544

23. McFarland JM, Ho ZV, Kugener G, Dempster JM, Montgomery PG, Bryan JG, et al. Improved estima-

tion of cancer dependencies from large-scale RNAi screens using model-based normalization and data

integration. Nat Commun. 2018; 9(1):4610. https://doi.org/10.1038/s41467-018-06916-5 PMID:

30389920

24. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a Cancer

Dependency Map. Cell. 2017; 170(3):564–76 e16. https://doi.org/10.1016/j.cell.2017.06.010 PMID:

28753430

25. McDonald ER 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR, et al. Project DRIVE:

A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-

Scale, Deep RNAi Screening. Cell. 2017; 170(3):577–92 e10. https://doi.org/10.1016/j.cell.2017.07.005

PMID: 28753431

26. Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, et al. Functional Genomic

Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. Cell. 2016; 164(1–

2):293–309. https://doi.org/10.1016/j.cell.2015.11.062 PMID: 26771497

27. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line

Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483

(7391):603–7. https://doi.org/10.1038/nature11003 PMID: 22460905

28. Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical

Society: Series B (Statistical Methodology). 2005; 67(2):301–20.

29. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma.

Nature. 2014; 511(7511):543–50. https://doi.org/10.1038/nature13385 PMID: 25079552

30. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer.

Nature. 2012; 487(7407):330–7. https://doi.org/10.1038/nature11252 PMID: 22810696

31. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify

molecular subtypes of pancreatic cancer. Nature. 2016; 531(7592):47–52. https://doi.org/10.1038/

nature16965 PMID: 26909576

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 18 / 20

https://doi.org/10.1158/2159-8290.CD-19-1167
http://www.ncbi.nlm.nih.gov/pubmed/31658955
https://doi.org/10.1038/s41586-019-1694-1
https://doi.org/10.1038/s41586-019-1694-1
http://www.ncbi.nlm.nih.gov/pubmed/31666701
https://doi.org/10.1056/NEJMoa1917239
https://doi.org/10.1056/NEJMoa1917239
http://www.ncbi.nlm.nih.gov/pubmed/32955176
https://doi.org/10.1016/j.ccr.2009.03.022
http://www.ncbi.nlm.nih.gov/pubmed/19477428
https://doi.org/10.1126/scitranslmed.aaq1238
http://www.ncbi.nlm.nih.gov/pubmed/30867319
https://doi.org/10.1016/j.cell.2014.06.003
https://doi.org/10.1016/j.cell.2014.06.003
http://www.ncbi.nlm.nih.gov/pubmed/24954535
https://doi.org/10.1038/s41467-017-00942-5
https://doi.org/10.1038/s41467-017-00942-5
http://www.ncbi.nlm.nih.gov/pubmed/29061961
https://doi.org/10.1158/2159-8290.CD-19-0597
http://www.ncbi.nlm.nih.gov/pubmed/32341020
https://doi.org/10.1016/j.celrep.2018.03.046
https://doi.org/10.1016/j.celrep.2018.03.046
http://www.ncbi.nlm.nih.gov/pubmed/29617658
https://doi.org/10.1158/1078-0432.CCR-13-1943
https://doi.org/10.1158/1078-0432.CCR-13-1943
http://www.ncbi.nlm.nih.gov/pubmed/24170544
https://doi.org/10.1038/s41467-018-06916-5
http://www.ncbi.nlm.nih.gov/pubmed/30389920
https://doi.org/10.1016/j.cell.2017.06.010
http://www.ncbi.nlm.nih.gov/pubmed/28753430
https://doi.org/10.1016/j.cell.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28753431
https://doi.org/10.1016/j.cell.2015.11.062
http://www.ncbi.nlm.nih.gov/pubmed/26771497
https://doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
https://doi.org/10.1038/nature13385
http://www.ncbi.nlm.nih.gov/pubmed/25079552
https://doi.org/10.1038/nature11252
http://www.ncbi.nlm.nih.gov/pubmed/22810696
https://doi.org/10.1038/nature16965
https://doi.org/10.1038/nature16965
http://www.ncbi.nlm.nih.gov/pubmed/26909576
https://doi.org/10.1371/journal.pcbi.1011095


32. Horsch M, Recktenwald CV, Schadler S, Hrabe de Angelis M, Seliger B, Beckers J. Overexpressed vs

mutated Kras in murine fibroblasts: a molecular phenotyping study. Br J Cancer. 2009; 100(4):656–62.

https://doi.org/10.1038/sj.bjc.6604882 PMID: 19190631

33. Birkeland E, Wik E, Mjos S, Hoivik EA, Trovik J, Werner HM, et al. KRAS gene amplification and overex-

pression but not mutation associates with aggressive and metastatic endometrial cancer. Br J Cancer.

2012; 107(12):1997–2004. https://doi.org/10.1038/bjc.2012.477 PMID: 23099803

34. Mekenkamp LJ, Tol J, Dijkstra JR, de Krijger I, Vink-Borger ME, van Vliet S, et al. Beyond KRAS muta-

tion status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in

metastatic colorectal cancer patients. BMC Cancer. 2012; 12:292. https://doi.org/10.1186/1471-2407-

12-292 PMID: 22804917

35. Valtorta E, Misale S, Sartore-Bianchi A, Nagtegaal ID, Paraf F, Lauricella C, et al. KRAS gene amplifica-

tion in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer. 2013; 133

(5):1259–65. https://doi.org/10.1002/ijc.28106 PMID: 23404247

36. Grant TJ, Mehta AK, Gupta A, Sharif AAD, Arora KS, Deshpande V, et al. STK38L kinase ablation pro-

motes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget.

2017; 8(45):78556–72. https://doi.org/10.18632/oncotarget.20833 PMID: 29108249

37. Kim JK, Marco MR, Choi SH, Qu X, Chen CT, Elkabets M, et al. KRAS mutant rectal cancer cells inter-

act with surrounding fibroblasts to deplete the extracellular matrix. Mol Oncol. 2021. https://doi.org/10.

1002/1878-0261.12960 PMID: 33817986

38. Del Prete A, Sozio F, Schioppa T, Ponzetta A, Vermi W, Calza S, et al. The Atypical Receptor CCRL2 Is

Essential for Lung Cancer Immune Surveillance. Cancer Immunol Res. 2019; 7(11):1775–88. https://

doi.org/10.1158/2326-6066.CIR-19-0168 PMID: 31484658

39. Pecot CV, Wu SY, Bellister S, Filant J, Rupaimoole R, Hisamatsu T, et al. Therapeutic silencing of

KRAS using systemically delivered siRNAs. Molecular cancer therapeutics. 2014; 13(12):2876–85.

https://doi.org/10.1158/1535-7163.MCT-14-0074 PMID: 25281617

40. Misale S, Fatherree JP, Cortez E, Li C, Bilton S, Timonina D, et al. KRAS G12C NSCLC Models Are

Sensitive to Direct Targeting of KRAS in Combination with PI3K Inhibition. Clin Cancer Res. 2019; 25

(2):796–807. https://doi.org/10.1158/1078-0432.CCR-18-0368 PMID: 30327306

41. Feng Q, Jiang M, Hannig J, Marron JS. Angle-based joint and individual variation explained. Journal of

Multivariate Analysis. 2018; 166:241–65.

42. Price BA, Marron JS, Mose LE, Perou CM, Parker JS. Translating genomic findings from model sys-

tems to humans through gene-wise cohort integration. 2022.

43. Mottini C, Cardone L. Beyond the Genomic Mutation: Rethinking the Molecular Biomarkers of K-RAS

Dependency in Pancreatic Cancers. Int J Mol Sci. 2020; 21(14). https://doi.org/10.3390/ijms21145023

PMID: 32708716

44. Castagnola P, Giaretti W. Mutant KRAS, chromosomal instability and prognosis in colorectal cancer.

Biochimica et Biophysica Acta (BBA)—Reviews on Cancer. 2005; 1756(2):115–25. https://doi.org/10.

1016/j.bbcan.2005.06.003 PMID: 16112461

45. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection iden-

tifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet.

2015; 47(10):1168–78. https://doi.org/10.1038/ng.3398 PMID: 26343385

46. Serresi M, Siteur B, Hulsman D, Company C, Schmitt MJ, Lieftink C, et al. Ezh2 inhibition in Kras-driven

lung cancer amplifies inflammation and associated vulnerabilities. J Exp Med. 2018; 215(12):3115–35.

https://doi.org/10.1084/jem.20180801 PMID: 30487290

47. Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, et al. TMEM16A induces MAPK

and contributes directly to tumorigenesis and cancer progression. Cancer Res. 2012; 72(13):3270–81.

https://doi.org/10.1158/0008-5472.CAN-12-0475-T PMID: 22564524

48. Chen H, Chong W, Wu Q, Yao Y, Mao M, Wang X. Association of LRP1B Mutation With Tumor Mutation

Burden and Outcomes in Melanoma and Non-small Cell Lung Cancer Patients Treated With Immune

Check-Point Blockades. Front Immunol. 2019; 10:1113. https://doi.org/10.3389/fimmu.2019.01113

PMID: 31164891

49. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-

small cell lung cancer in smokers and never-smokers. Cell. 2012; 150(6):1121–34. https://doi.org/10.

1016/j.cell.2012.08.024 PMID: 22980976

50. Liu Y, Song H, Yu S, Huang KH, Ma X, Zhou Y, et al. Protein Kinase D3 promotes the cell proliferation

by activating the ERK1/c-MYC axis in breast cancer. J Cell Mol Med. 2020; 24(3):2135–44. https://doi.

org/10.1111/jcmm.14772 PMID: 31944568

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 19 / 20

https://doi.org/10.1038/sj.bjc.6604882
http://www.ncbi.nlm.nih.gov/pubmed/19190631
https://doi.org/10.1038/bjc.2012.477
http://www.ncbi.nlm.nih.gov/pubmed/23099803
https://doi.org/10.1186/1471-2407-12-292
https://doi.org/10.1186/1471-2407-12-292
http://www.ncbi.nlm.nih.gov/pubmed/22804917
https://doi.org/10.1002/ijc.28106
http://www.ncbi.nlm.nih.gov/pubmed/23404247
https://doi.org/10.18632/oncotarget.20833
http://www.ncbi.nlm.nih.gov/pubmed/29108249
https://doi.org/10.1002/1878-0261.12960
https://doi.org/10.1002/1878-0261.12960
http://www.ncbi.nlm.nih.gov/pubmed/33817986
https://doi.org/10.1158/2326-6066.CIR-19-0168
https://doi.org/10.1158/2326-6066.CIR-19-0168
http://www.ncbi.nlm.nih.gov/pubmed/31484658
https://doi.org/10.1158/1535-7163.MCT-14-0074
http://www.ncbi.nlm.nih.gov/pubmed/25281617
https://doi.org/10.1158/1078-0432.CCR-18-0368
http://www.ncbi.nlm.nih.gov/pubmed/30327306
https://doi.org/10.3390/ijms21145023
http://www.ncbi.nlm.nih.gov/pubmed/32708716
https://doi.org/10.1016/j.bbcan.2005.06.003
https://doi.org/10.1016/j.bbcan.2005.06.003
http://www.ncbi.nlm.nih.gov/pubmed/16112461
https://doi.org/10.1038/ng.3398
http://www.ncbi.nlm.nih.gov/pubmed/26343385
https://doi.org/10.1084/jem.20180801
http://www.ncbi.nlm.nih.gov/pubmed/30487290
https://doi.org/10.1158/0008-5472.CAN-12-0475-T
http://www.ncbi.nlm.nih.gov/pubmed/22564524
https://doi.org/10.3389/fimmu.2019.01113
http://www.ncbi.nlm.nih.gov/pubmed/31164891
https://doi.org/10.1016/j.cell.2012.08.024
https://doi.org/10.1016/j.cell.2012.08.024
http://www.ncbi.nlm.nih.gov/pubmed/22980976
https://doi.org/10.1111/jcmm.14772
https://doi.org/10.1111/jcmm.14772
http://www.ncbi.nlm.nih.gov/pubmed/31944568
https://doi.org/10.1371/journal.pcbi.1011095


51. Chen J, Shen Q, Labow M, Gaither LA. Protein kinase D3 sensitizes RAF inhibitor RAF265 in mela-

noma cells by preventing reactivation of MAPK signaling. Cancer Res. 2011; 71(12):4280–91. https://

doi.org/10.1158/0008-5472.CAN-10-3761 PMID: 21527556

52. Zhang Y, Zhu T, Liu J, Liu J, Gao D, Su T, et al. FLNa negatively regulated proliferation and metastasis

in lung adenocarcinoma A549 cells via suppression of EGFR. Acta Biochim Biophys Sin (Shanghai).

2018; 50(2):164–70. https://doi.org/10.1093/abbs/gmx135 PMID: 29272322

53. Kundu S, Ali MA, Handin N, Conway LP, Rendo V, Artursson P, et al. Common and mutation specific

phenotypes of KRAS and BRAF mutations in colorectal cancer cells revealed by integrative -omics

analysis. J Exp Clin Cancer Res. 2021; 40(1):225. https://doi.org/10.1186/s13046-021-02025-2 PMID:

34233735

54. Ozcan SC, Mutlu A, Altunok TH, Gurpinar Y, Sarioglu A, Guler S, et al. Simultaneous inhibition of

PFKFB3 and GLS1 selectively kills KRAS-transformed pancreatic cells. Biochem Biophys Res Com-

mun. 2021; 571:118–24. https://doi.org/10.1016/j.bbrc.2021.07.070 PMID: 34325126

55. Wang F, Qi XM, Wertz R, Mortensen M, Hagen C, Evans J, et al. p38gamma MAPK Is Essential for Aer-

obic Glycolysis and Pancreatic Tumorigenesis. Cancer Res. 2020; 80(16):3251–64.

56. Yang M, Davis TB, Pflieger L, Nebozhyn MV, Loboda A, Wang H, et al. An integrative gene expression

signature analysis identifies CMS4 KRAS-mutated colorectal cancers sensitive to combined MEK and

SRC targeted therapy. BMC Cancer. 2022; 22(1):256. https://doi.org/10.1186/s12885-022-09344-3

PMID: 35272617

57. Jia M, Gao X, Zhang Y, Hoffmeister M, Brenner H. Different definitions of CpG island methylator pheno-

type and outcomes of colorectal cancer: a systematic review. Clin Epigenetics. 2016; 8:25. https://doi.

org/10.1186/s13148-016-0191-8 PMID: 26941852

58. Fedorova MS, Krasnov GS, Lukyanova EN, Zaretsky AR, Dmitriev AA, Melnikova NV, et al. The CIMP-

high phenotype is associated with energy metabolism alterations in colon adenocarcinoma. BMC Med

Genet. 2019; 20(Suppl 1):52. https://doi.org/10.1186/s12881-019-0771-5 PMID: 30967137

59. Shire NJ, Klein AB, Golozar A, Collins JM, Fraeman KH, Nordstrom BL, et al. STK11 (LKB1) mutations

in metastatic NSCLC: Prognostic value in the real world. PLoS One. 2020; 15(9):e0238358.

60. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for Lung Cancers with KRAS

p.G12C Mutation. N Engl J Med. 2021; 384(25):2371–81. https://doi.org/10.1056/NEJMoa2103695

PMID: 34096690

61. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1

Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov.

2018; 8(7):822–35. https://doi.org/10.1158/2159-8290.CD-18-0099 PMID: 29773717

62. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation

response. Proc Natl Acad Sci U S A. 2001; 98(9):5116–21. https://doi.org/10.1073/pnas.091062498

PMID: 11309499

PLOS COMPUTATIONAL BIOLOGY K20 model for predicting KRAS dependency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011095 May 4, 2023 20 / 20

https://doi.org/10.1158/0008-5472.CAN-10-3761
https://doi.org/10.1158/0008-5472.CAN-10-3761
http://www.ncbi.nlm.nih.gov/pubmed/21527556
https://doi.org/10.1093/abbs/gmx135
http://www.ncbi.nlm.nih.gov/pubmed/29272322
https://doi.org/10.1186/s13046-021-02025-2
http://www.ncbi.nlm.nih.gov/pubmed/34233735
https://doi.org/10.1016/j.bbrc.2021.07.070
http://www.ncbi.nlm.nih.gov/pubmed/34325126
https://doi.org/10.1186/s12885-022-09344-3
http://www.ncbi.nlm.nih.gov/pubmed/35272617
https://doi.org/10.1186/s13148-016-0191-8
https://doi.org/10.1186/s13148-016-0191-8
http://www.ncbi.nlm.nih.gov/pubmed/26941852
https://doi.org/10.1186/s12881-019-0771-5
http://www.ncbi.nlm.nih.gov/pubmed/30967137
https://doi.org/10.1056/NEJMoa2103695
http://www.ncbi.nlm.nih.gov/pubmed/34096690
https://doi.org/10.1158/2159-8290.CD-18-0099
http://www.ncbi.nlm.nih.gov/pubmed/29773717
https://doi.org/10.1073/pnas.091062498
http://www.ncbi.nlm.nih.gov/pubmed/11309499
https://doi.org/10.1371/journal.pcbi.1011095

