291 research outputs found
Recommended from our members
The spatiotemporal structure of precipitation in Indian monsoon depressions
Indian monsoon depressions are synoptic scale events typically spun up in the Bay of Bengal. They usually last 4–6 days, during which they propagate northwestward across the Indian subcontinent before dissipating over northwest India or Pakistan. They can have a significant effect on monsoon precipitation, particularly in primarily agrarian northern India, and therefore quantifying their structure and variability and evaluating these in NWP models and GCMs is of critical importance. In this study, satellite data from the CloudSat and recently concluded TRMM missions are used in conjunction with an independently evaluated tracking algorithm to form a three-dimensional composite image of cloud structure and precipitation within monsoon depressions. The composite comprises 34 depressions from the 1998–2014 TRMM mission and 12 from the 2007-present CloudSat mission, and is statistically robust enough to allow significant probing of the spatiotemporal characteristics of moisture and hydrometeor fields. Among the key results of this work are the discovery and characterisation of a bimodal, diurnal cycle in surface precipitation; the first picture of the structure of cloud type and density in depressions, showing that deep convection dominates south of the centre and prominent cirrus throughout; the first composite picture of vertical hydrometeor structure in depressions, showing significant precipitation for hundreds of kilometres outside the centre and well past the mid-troposphere; and novel discussion of drop size distributions (showing significant uniformity across the depression) and resulting latent heat profiles, showing average heating rates near the centre can reach 2K/hr
Programming Light-Harvesting Efficiency Using DNA Origami.
The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological "nanomachines" in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.A. W. C. acknowledges support from the Winton Programme for the Physics of Sustainability.
U. F. K. was partly supported by an ERC starting grant (PassMembrane, EY 261101).
E. A.H. acknowledges support from Janggen-Pöhn Stiftung and the Schweizerischer Nationalfonds
(SNF). P. T. acknowledges support by a starting grant (SiMBA, EU 261162) of the
European Research Council (ERC). B. W. gratefully acknowledges support by the Braunschweig
International Graduate School of Metrology B-IGSM and the DFG Research Training
Group GrK1952/1 ‘Metrology for Complex Nanosystems’. P. M. thankfully acknowledges the
support of the EPSRC Centre for Doctoral Training in Sensor Technologies and Applications
EP/L015889/1.This is the final version of the article. It first appeared from ACS via https://doi.org/10.1021/acs.nanolett.5b0513
The chicken gene nomenclature committee report
Comparative genomics is an essential component of the post-genomic era. The chicken genome is the first avian genome to be sequenced and it will serve as a model for other avian species. Moreover, due to its unique evolutionary niche, the chicken genome can be used to understand evolution of functional elements and gene regulation in mammalian species. However comparative biology both within avian species and within amniotes is hampered due to the difficulty of recognising functional orthologs. This problem is compounded as different databases and sequence repositories proliferate and the names they assign to functional elements proliferate along with them. Currently, genes can be published under more than one name and one name sometimes refers to unrelated genes. Standardized gene nomenclature is necessary to facilitate communication between scientists and genomic resources. Moreover, it is important that this nomenclature be based on existing nomenclature efforts where possible to truly facilitate studies between different species. We report here the formation of the Chicken Gene Nomenclature Committee (CGNC), an international and centralized effort to provide standardized nomenclature for chicken genes. The CGNC works in conjunction with public resources such as NCBI and Ensembl and in consultation with existing nomenclature committees for human and mouse. The CGNC will develop standardized nomenclature in consultation with the research community and relies on the support of the research community to ensure that the nomenclature facilitates comparative and genomic studies
Using ‘sport in the community schemes’ to tackle crime and drug use among young people: Some policy issues and problems
This is a PDF version of an article published in European physical education review © Sage, 2004. The definitive version is available at www.sagepub.com.This article discusses the effectiveness of sport in the community schemes such as the Positive Futures initative and Summer Splsh/Splash Extra in reducing crime and drug use amongst young people
Lymphocyte Cc Chemokine Receptor 9 and Epithelial Thymus-Expressed Chemokine (Teck) Expression Distinguish the Small Intestinal Immune Compartment: Epithelial Expression of Tissue-Specific Chemokines as an Organizing Principle in Regional Immunity
The immune system has evolved specialized cellular and molecular mechanisms for targeting and regulating immune responses at epithelial surfaces. Here we show that small intestinal intraepithelial lymphocytes and lamina propria lymphocytes migrate to thymus-expressed chemokine (TECK). This attraction is mediated by CC chemokine receptor (CCR)9, a chemoattractant receptor expressed at high levels by essentially all CD4+ and CD8+ T lymphocytes in the small intestine. Only a small subset of lymphocytes in the colon are CCR9+, and lymphocytes from other tissues including tonsils, lung, inflamed liver, normal or inflamed skin, inflamed synovium and synovial fluid, breast milk, and seminal fluid are universally CCR9−. TECK expression is also restricted to the small intestine: immunohistochemistry reveals that intense anti-TECK reactivity characterizes crypt epithelium in the jejunum and ileum, but not in other epithelia of the digestive tract (including stomach and colon), skin, lung, or salivary gland. These results imply a restricted role for lymphocyte CCR9 and its ligand TECK in the small intestine, and provide the first evidence for distinctive mechanisms of lymphocyte recruitment that may permit functional specialization of immune responses in different segments of the gastrointestinal tract. Selective expression of chemokines by differentiated epithelium may represent an important mechanism for targeting and specialization of immune responses
The RS Oph outburst of 2021 monitored in X-rays with NICER
The 2021 outburst of the symbiotic recurrent nova RS Oph was monitored with
the Neutron Star Interior Composition Explorer Mission (NICER) in the 0.2-12
keV range from day one after the optical maximum, until day 88, producing an
unprecedented, detailed view of the outburst development. The X-ray flux
preceding the supersoft X-ray phase peaked almost 5 days after optical maximum
and originated only in shocked ejecta for 21 to 25 days. The emission was
thermal; in the first 5 days only a non-collisional-ionization equilibrium
model fits the spectrum, and a transition to equilibrium occurred between days
6 and 12. The ratio of peak X-rays flux measured in the NICER range to that
measured with Fermi in the 60 MeV-500 GeV range was about 0.1, and the ratio to
the peak flux measured with H.E.S.S. in the 250 GeV-2.5 TeV range was about
100. The central supersoft X-ray source (SSS), namely the shell hydrogen
burning white dwarf (WD), became visible in the fourth week, initially with
short flares. A huge increase in flux occurred on day 41, but the SSS flux
remained variable. A quasi-periodic oscillation every ~35 s was always observed
during the SSS phase, with variations in amplitude and a period drift that
appeared to decrease in the end. The SSS has characteristics of a WD of mass >1
M(solar). Thermonuclear burning switched off shortly after day 75, earlier than
in 2006 outburst. We discuss implications for the nova physics.Comment: Accepted for publication in the Astrophysical Journa
The Reflection Component from Cygnus X-1 in the Soft State Measured by NuSTAR and Suzaku
The black hole binary Cygnus X-1 was observed in late 2012 with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku, providing spectral coverage over the ~1-300 keV range. The source was in the soft state with a multi-temperature blackbody, power law, and reflection components along with absorption from highly ionized material in the system. The high throughput of NuSTAR allows for a very high quality measurement of the complex iron line region as well as the rest of the reflection component. The iron line is clearly broadened and is well described by a relativistic blurring model, providing an opportunity to constrain the black hole spin. Although the spin constraint depends somewhat on which continuum model is used, we obtain ɑ_* > 0.83 for all models that provide a good description of the spectrum. However, none of our spectral fits give a disk inclination that is consistent with the most recently reported binary values for Cyg X-1. This may indicate that there is a >13° misalignment between the orbital plane and the inner accretion disk (i.e., a warped accretion disk) or that there is missing physics in the spectral models
- …