221 research outputs found

    Comparison of Observed and Simulated Grow-Finish Swine Performance Under Summer Conditions

    Get PDF
    As a part of a National Pork Producers Council educational program, our research and extension team at the University of Kentucky was linked with an independent commercial swine producer to test the NCPIG model against observed commercial on-farm data. This experience provided improved information for model development as well as increased producer insight into the data input needs and potential benefits of modeling. Detailed production information comparisons between the NCPIG model and producer data are presented for summer time conditions to assess the validity of the NCPIG model for simulation of grow-finish swine performance. Results demonstrated that the NCPIG model accurately simulated performance

    Magnetic Fields Produced by Phase Transition Bubbles in the Electroweak Phase Transition

    Get PDF
    The electroweak phase transition, if proceeding through nucleation and growth of bubbles, should generate large scale turbulent flow, which in turn generates magnetic turbulence and hence magnetic fields on the scale of turbulent flow. We discuss the seeding of this turbulent field by the motion of the dipole charge layers in the phase transition bubble walls, and estimate the strength of the produced fields.Comment: Revtex, 14 pages, 3 figures appended as uuencoded postscript-fil

    The evaluation of disability and its related factors among the elderly population in Kashan, Iran

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent literature indicates that developing countries in Asia are aging faster than other countries in the world and disability has become one of the greater public health concern in these countries. Pausity of published data on the elderly disability in Iran signifies the importance of this study designed to evaluate the disability and its related factors among the elderly population in Kashan, Iran during 2006–2007.</p> <p>Methods/Design</p> <p>A cross-sectional study is conducting on a multy-stage random sample of elderly people in Kashan ages 65 years and older. Volunteer participants were included by age 65 and older and excluded if they had the medical diagnosis of Alzhimer disease. The WHO DAS II was used as the generic disability measure in this survey. The original version of WHO DAS II was translated into Farsi according to the standardized guidelines for cross-cultural adaptation of health-related measures. Upon completion of data collection the descriptive statistics will compute all the variables. Chi-square, t-test analysis and ANOVA will be used to examine significant differences between the subgroups.</p> <p>Discussion</p> <p>This is the first research protocol to study disability among the Iranian elderly population. Presently, 80% of eligible subjects have been selected. The results of this study will help to develop more effective protocols to assist Iranian elderly population with disabilities.</p

    Centers for Oceans and Human Health : a unified approach to the challenge of harmful algal blooms

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License The definitive version was published in Environmental Health 7 (2008): S2, doi:10.1186/1476-069X-7-S2-S2.Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.This work was funded through grants from the NSF/NIEHS Centers for Oceans and Human Health, NIEHS P50 ES012742 and NSF OCE-043072 (DLE and DMA), NSF OCE04-32479 and NIEHS P50 ES012740 (PB and RRB), NSF OCE-0432368 and NIEHS P50 ES12736 (LEB), NIEHS P50 ES012762 and NSF OCE-0434087 (RCS, KAL, MSP, MLW, and KAH). Additional support was provided by the ECOHAB Grant program NSF Grant OCE-9808173 and NOAA Grant NA96OP0099 (DMA), NOAA OHHI NA04OAR4600206 (RRB) and Washington State Sea Grant NA16RG1044 (RCS). KAL and VLT were supported in part by the West Coast Center for Oceans and Human Health (WCCOHH) as part of the NOAA Oceans and Human Health Initiative

    Assessing Cervical Dislocation as a Humane Euthanasia Method in Mice

    Get PDF
    Research investigators often choose to euthanize mice by cervical dislocation (CD) when other methods would interfere with the aims of a research project. Others choose CD to assure death in mice treated with injected or inhaled euthanasia agents. CD was first approved for mouse euthanasia in 1972 by the AVMA Panel on Euthanasia, although scientific assessment of its humaneness has been sparse. Here we compared 4 methods of spinal dislocation–3 targeting the cervical area (CD) and one the thoracic region–in regard to time to respiratory arrest in anesthetized mice. Of the 81 mice that underwent CD by 1 of the 3 methods tested, 17 (21%) continued to breathe, and euthanasia was scored as unsuccessful. Postmortem radiography revealed cervical spinal lesions in 5 of the 17 cases of unsuccessful CD euthanasia. In addition, 63 of the 64 successfully euthanized mice had radiographically visible lesions in the high cervical or atlantooccipital region. In addition, 50 of 64 (78%) mice euthanized successfully had radiographically visible thoracic or lumbar lesions or both. Intentionally creating a midthoracic dislocation in anesthetized mice failed to induce respiratory arrest and death in any of the 18 mice subjected to that procedure. We conclude that CD of mice holds the potential for unsuccessful euthanasia, that anesthesia could be valuable for CD skills training and assessment, and that postmortem radiography has minimal promise in quality-control assessments
    • …
    corecore