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Abstract

The electroweak phase transition, if proceeding through nucleation and

growth of bubbles, should generate large scale turbulent flow, which in turn

generates magnetic turbulence and hence magnetic fields on the scale of tur-

bulent flow. We discuss the seeding of this turbulent field by the motion of

the dipole charge layers in the phase transition bubble walls, and estimate the

strength of the produced fields.

I. INTRODUCTION

The problem of the generation of magnetic fields is an old one in cosmology [1,2]. The

general approach is to identify mechanisms for the generation of seed fields [3]- [7], which

can become amplified into fields on galactic scales. Considerable attention has been focused
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on generation of seed fields during cosmic phase transitions, e.g., Ref. [4], particularly at the

electroweak transition [5], or at the QCD transition through formation of electromagnetic

fields in the collision of shock fronts [6] or formation of dipole charge layers on the surfaces of

phase transition bubble walls whose motion generates an electromagnetic current and hence

a magnetic field [7]. Always present as a source of seed fields are random magnetic field

fluctuations on a scale of order a thermal wavelength. Once one has identified the source

of microscale seed fields, it is necessary to find how they are transformed into macroscopic

scale magnetic fields, a process requiring production of current loops on large size scales,

and thus the generation of a level of vorticity in the fluid.

In this paper we focus on the generation and amplification of fields at the electroweak

phase transition, by means of the fluid, and hence magnetic, turbulence which should be

formed there. During a first-order electroweak phase transition bubbles of the new phase

form [8]- [12] [but see arguments in Ref. [13] why the transition, even if first order transition,

need not necessarily proceed dynamically via domain wall formation]. Then, as we argue in

Sec. II, bubble collisions generate a level of turbulence and hence vorticity in the fluid. As

a bubble propagates through the electroweak plasma, it generates a precursor shock front

which accelerates the fluid outside the burning front of the bubble. As the shock fronts

from different bubbles collide, they generate turbulent jets on a scale of order the size of

a typical bubble. The turbulence in the fluid amplifies whatever seed fields are present to

finite-amplitude large-scale size magnetic fields [14]. These fields can be considerable, if

there is time for equipartition between the kinetic energy associated with the turbulent flow

and the magnetic field energy.

A possible mechanism of generation of magnetic seed fields is via the dipole electromag-

netic charge layer on the surfaces of the bubbles that forms, as discussed in Sec. III, as a

consequence of baryon asymmetry and the large mass of the top quark. The burning sur-

faces of bubbles propagating within a region of turbulent flow rotate in the moving fluid.

The rotation of the dipole charge layer thus sets up a current in the fluid. We estimate the

typical magnetic field generated by a single bubble, and then argue that these fields provide
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at least one source of seed magnetic fields in the turbulent fluid which are then amplified

into full scale magnetic turbulence. The strength of the fields produced this way are consid-

erably smaller in the absence of magnetic turbulence than the fields that would result from

equipartition in the turbulent flow.

In order to estimate the generated magnetic field on scale sizes large compared to the

electroweak scale through the cumulative effect of the many bubbles in the system, we follow

the classic analysis of Hogan [4], and determine, in Sec. IV, the magnetic field correlation

function,

C(r ) = 〈B(r )B(0)〉 . (1)

If magnetic fields diffuse up to a scale R, then the average magnetic field squared which

remains after diffusion will be given in terms of the correlation function by

〈
B2
〉
R
∼ 〈C(r)〉R , (2)

where 〈· · ·〉R denotes the spatial average over a volume of size ∼ R3. From this result we

estimate the typical energy in the magnetic field at any time at distance scales greater than

the magnetic field diffusion length at that time. Finally we discuss the possible relevance of

this work for cosmology. Throughout we use units in which c = h̄ = 1.

II. ELECTROWEAK PHASE TRANSITION BUBBLES AND TURBULENCE

The electroweak phase transition appears, within acceptable parameters, to be weakly

first order [8]- [12]. As the universe cools through the electroweak transition temperature,

Tc ∼ 100 GeV, the plasma in the unbroken phase supercools; eventually, one assumes, small

regions of the broken symmetry phase, with non-zero Higgs expectation value, nucleate,

forming bubbles which expand and fill the system [15]- [17].

The typical size of a bubble after the phase transition is completed is in the range

Rbubble ∼ fbH
−1
ew (3)
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where

H−1
ew ∼

mPl

g
1/2
∗ T 2

c

∼ 10cm (4)

is the size of the event horizon at the electroweak scale, mPl is the Planck mass, g∗ ∼ 102

is the number of massless degrees of freedom in the matter, and the fractional size fb

is ∼ 10−2 − 10−3 [15,16]. These numbers are typical of parameters characteristic of the

electroweak phase transition.

The bubble wall surface appears to be stable against small fluctuations [17]. The bubble

wall velocity, while poorly known, should be in the range

vwall ∼ 0.05− 0.9. (5)

When vwall < 1/
√

3, the sound velocity in the symmetric phase of the electroweak plasma,

the burning of the symmetric phase proceeds by deflagration in which the phase transition

burning front expands out into the symmetric phase. Ahead of the burning front, a super-

sonic shock moves into the symmetric phase, accelerating it outward, as shown schematically

in Fig. 1a. On the other hand, when the bubble wall velocity is supersonic in the symmetric

phase, the burning discontinuity generates in its wake a similarity rarefaction wave, with

velocity and temperature profiles illustrated in Fig. 1b.

As two shock fronts associated with the nucleation bubbles collide, they generate tur-

bulence, shown in Fig. 2. At the point where the shock fronts intersect, the velocity of

the fluid from one bubble is in a different direction than that from the other bubble. The

geometry is similar to the classic problem of the formation of a turbulent jet. The Reynolds

number, Re, of the flow around two colliding bubbles is sufficiently large that we expect

fully developed turbulence in a cone associated with the intersection of the two bubbles,

whose opening angle depends on the angle of intersection of the two fluids [18].

The Reynolds number for the collision of two bubbles is

Re ∼
vfluidRbubble

λ
, (6)
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where vfluid is the typical fluid velocity, which we take to be ∼ vwall ∼ 10−1; the typical size

of a bubble, Rbubble, is given by Eq. (3). The typical scattering length λ of excitations in

the plasma is of order

λ ∼
1

Tgewα2
w| lnαw|

, (7)

where αw is the fine structure constant at the electroweak scale, and gew ∼ g∗ is the number

of degrees of freedom that scatter by electroweak processes [19]. Therefore

Re ∼ 10−3mPl

Tc
α2

w| lnαw| ∼ 1012 (8)

is sufficiently huge, for any macroscopic size bubble, that the collision of the shocked matter

should generate turbulent flow.

A turbulent conducting fluid develops magnetic turbulence, resulting in magnetic fields

on all scale sizes. The relevant time scale for the amplification of fields on length scale l is of

order (l/Rbubble)ttrans, where ttrans ∼ Rbubble/vwall is the duration of the phase transition. If

the field growth is exponential, fields on scales l<∼Rbubble can be amplified by many e-folds.

When magnetic turbulence becomes fully developed, the kinetic energy of the turbulent flow

is equipartitioned with that of the magnetic field energy, implying that the magnetic fields,

B(Rbubble), generated on the scale of the phase transition bubbles, the largest scale typical

of the turbulent flow, are given by

B2(Rbubble) ∼ ε(Tc)v
2
fluid, (9)

where ε(Tc) ∼ g∗T 4
c is the energy density of the electroweak plasma. Since the velocity of the

turbulent flow is ∼ 10−1, a very large fraction of the energy of the fluid is in electromagnetic

fields. Turbulent flow is therefore capable of amplifying any seed field by many orders of

magnitude.

Thermal fluctuations provide a omnipresent source of seed fields whose size can be es-

timated by Eqs. (1) and (2), with the average in Eq. (1) the thermal average for a free

photon gas. For scale R� T−1
c one has
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B2
fluct ∼

Tc

R3
∼ g3/2

∗ T 4
c f
−3
b

(
Tc

mPl

)3 (Rbubble

R

)3

, (10)

i.e., for R ∼ Rbubble the value of B2
fluct is smaller than the equipartition value by a factor of

(g1/2
∗ /v2

fluid)f
−3
b (Tc/mPl)3.

III. MAGNETIC FIELD GENERATED BY DIPOLE CHARGE LAYER IN THE

BUBBLE WALL

Let us now compare the magnitude of magnetic fields generated by turbulence with those

generated from currents in the bubble walls in the absence of magnetic turbulence. These

currents arise from the electric dipole layer that develops in the bubble wall, as a consequence

of the baryon asymmetry of matter undergoing the transition combined with the fact that

the mass of the top quark is comparable to the phase transition temperature.

The net baryon number is non-zero in the broken symmetry phase. If baryogenesis is

not associated with the electroweak phase transition, then the local baryon density in the

neighborhood of the bubble wall is characterized by a baryon number chemical potential

µb ∼ 10−9Tc. On the other hand, if the baryon asymmetry is generated at the electroweak

phase transition, the asymmetry is driven by CP violating effects and µb can be much larger.

We take as an acceptable range 10−9 < µb/Tc < 10−2.

The expectation value of the Higgs field goes from zero to a finite value as one traverses

the bubble wall into the broken symmetry phase. Thus the top quark has a non-zero mass

inside the bubble, and zero mass outside. Top quarks present outside the bubbles face

a potential barrier at the bubble wall, which leads to a Boltzmann suppression of their

number inside the bubble and near the surface. The slight excess of top over anti-top quarks

contributes a net positive charge outside the bubbles, but the charge excess from the tops

is suppressed inside. Overall charge neutrality is guaranteed by the presence of a small

electrostatic potential, A0, which is more negative inside the bubble than outside, attracting

light positively charged particles to the interior.
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The electrostatic potential is determined by

−∇2A0 = eρem(x), (11)

where ρem is the total local electric charge. Expanding the distributions of the various

charged species to leading order in A0 and the small non-zero charge, baryon and lepton

number chemical potentials, and then for simplicity expanding in powers of (mtop/T )2, we

find

eρem +m2
DA

0 ∼ −em2
top(x)µb, (12)

where mD is the Debye mass for massless leptons and quarks (including the top). (We

neglect a small correction to the Debye screening term ∼ m2
top(x).) The Debye screening

length 1/mD is of order 1/eT . In the expected limit where the thickness, Lwall, of the bubble

wall is � 1/mD, we solve Eqs. (11) and (12) by expanding in powers of ∇2/m2
D, and find

eρem(x) ∼
eµb
m2

D

∇2m2
top(x) (13)

plus corrections involving higher order powers of 1/(mDLwall)2. The charge density on the

surface, x ≈ 0, is of order

eρem(0) ∼
1

e
ηbT

3
c ε, (14)

where the typical baryon asymmetry near the bubble wall is ηb ∼ µb/Tc, m2
D ∼ e

2T 2
c , and

ε ≡

(
mtop

T 2
c Lwall

)2

. (15)

Typically TcLwall ∼ 10-100, so that ε ∼ 10−2 − 10−4. For mtop(x) monotonically decreasing

from inside to out across the bubble surface, we see that the bubble has a dipole charge

layer of order eρem(0)Lwall per unit area.

In order for the dipole charge layer on the bubble wall to generate a magnetic field the

bubble must have a net rotation. If the bubble is propagating in a turbulent region with

vorticity, its surface acquires a net rotational velocity, vrot, of order the typical turbulent
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velocity in the fluid, vfluid ∼ 10−1. A rotating bubble thus has associated with it a magnetic

moment of order

Mbubble ∼ eρemL
2
wallR

2
bubblevrot

∼ ηb
m2

top

mD
vfluidR

2
bubble. (16)

The magnetic field generated by the bubble on a scale size of order the bubble radius is

therefore

Bbubble ∼
Mbubble

R3
bubble

∼ ηb
m2

topvfluid

mDRbubble

∼ g1/2
∗ vfluidT

2
c

ηb

fb

m2
top

mDmPl

. (17)

We note that the magnetic field produced by this mechanism is smaller by a factor ∼

ηbTc/mPl compared with the field expected from equipartition in a magnetically turbulent

environment, Eq. (9). At the electroweak scale the equipartition field is ∼ 1024 gauss, and

the field produced from the dipole layers in the bubble walls, ∼ 10−2 gauss, is a factor

∼ 10−26 smaller.

Cheng and Olinto [7], by contrast, find a field produced by the dipole layer in the bubbles

at the QCD transition, at T ∼ 100 MeV, of order 10−10 − 10−12 of the equipartition field,

∼ 1018 gauss. The reason for their much larger fraction is that they assume that the width

of the dipole layer is controlled by the width of the baryon diffusion layer, ∼ 107 fm, rather

than the microphysics length scale ∼ 1 fm at the QCD scale. The diffusion layer for the

baryon number is so much larger because the QCD transition occurs sufficiently slowly that

the particles have time to undergo many scatterings during the transition. In the electroweak

transition on the other hand, the bubble walls move relativistically, and little diffusion takes

place.

IV. LARGE SCALE MAGNETIC FIELDS

We now ask how magnetic fields on scales larger than the electroweak bubble size are

generated by superposition of the fields associated with the turbulent flow. A first estimate
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can be made by assuming that the magnetic fields on scales large compared with the size of

the turbulent velocity fields are generated by randomly oriented magnetic dipoles of typical

size that of this velocity field.

A magnetic dipole M generates a magnetic field far from the dipole of order

B (~r ) ∼ e
M

| r− rd |3
(18)

where rd is the position of the dipole. Near the dipole the field saturates to a more or less

constant value. To estimate the net magnetic fields produced by randomly oriented dipoles,

we make a continuum approximation for the distribution of dipoles, and assume that the

density νi(~r ) of dipoles pointing in the ith direction is Gaussianly distributed with measure

∫
[dνi] exp

{
−

1

2κ

∫
d3r ~ν2(r)

}
, (19)

where κ is a constant. The correlation function of the density of dipoles implied by the

distribution (19) is

〈
νi(r)νj(0)

〉
= κδijδ(3)(r). (20)

From Eqs. (18) and (20) we thus find the magnetic field-magnetic field correlation function

〈B(r) ·B(0)〉 ∼ e2κ
∫
d3rd

1

| r− rd |3
1

| rd |3
. (21)

This integral representation is dominated by the regions where either | rd |→ 0 or | r−rd |→

0. The logarithmic divergence of the integral in these regions is cut off by the size of the

typical dipole, fbH
−1
ew , so that for r � fbH

−1
ew ,

〈B(r) ·B(0)〉 ∼
e2κ

r3
ln

(
Hewr

fb

)
. (22)

The average strength of B2 measured by averaging on a size scale R is thus1

1This results differs from Hogan [4], who on the basis of a random walk of the field lines finds〈
B2
〉
R ∼ R

−3.
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〈
B2
〉
R
∼
e2κ

R3
ln2

(
HewR

fb

)
. (23)

If we assume equipartition, and compare with Eq. (9), we see that κ is given by

e2κ ∼
(
fbH

−1
ew

)3
εv2

fluid, (24)

and therefore

〈
B2
〉
R
∼ v2

fluidg∗T
4
c

(
fb

HewR

)3

ln2

(
HewR

fb

)
. (25)

The expansion of the universe causes the magnetic field to decrease as the square of scale

factor of the universe. Therefore, in the absence of flux diffusion, the ratio of 〈B2〉 to the

energy ργ in photons,

ηB ≡
〈B2〉R
ργ

, (26)

remains independent of time, when measured on a comoving scale size. From (25) we have

ηB ∼ v2
fluidf

3
b

(
λew

R

)3

ln2

(
R

fbλew

)
, (27)

where λew is the size of the universe at the electroweak phase transition times the scale

factor, Tc/Tγ, where Tγ is the temperature of the microwave background; at the present

epoch λew ∼ 102 AU.

Magnetic fields from the electroweak transition can survive only on scales on which

magnetic diffusion has not had time to wash out the field correlations. The flux diffusion

equation, which in the local fluid rest frame can be written as,

∂2
tB + k2B + 4πσ∂tB = 0, (28)

where σ is the electrical conductivity, implies that a magnetic field of length scale 1/k dies

off on a time scale

τ ∼ σ/k2; (29)
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long wavelength magnetic fields set up at the electroweak phase transition die away very

slowly.

The characteristic diffusion distance at time τ is therefore of order

ldiff ∼
√
τ/σ; (30)

at τ magnetic fields on length scales larger than ldiff are not yet significantly affected by

diffusion. An upper limit on the diffusion length is its present value, about 3 AU [7] which

is not much smaller than the size of the horizon at the electroweak phase transition.

In the present epoch, ηB ∼ (10−6 − 10−9) × (102AU/R)3 ln2(R/1AU) for fb = 10−2 −

10−3. Thus the equipartition magnetic field on a scale of order of diffusion length in the

extragalactic medium is now about B(R ∼ 10AU) ∼ 10−7 − 10−9 gauss. These fields might

have acted in an earlier epoch as seed fields, subsequently ampified by a galactic dynamo

mechanism to produce the galactic magnetic fields. On a galactic size scale, at present seven

orders of magnitude larger than the present size of the electroweak horizon, one finds that

the equipartition field is B(R ∼ 109AU) ∼ 10−17 − 10−20 gauss.
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FIGURES

FIG. 1. Bubble structure in (1+1) dimensions for a first-order electroweak phase transition.

The energy density ε and the fluid rapidity Θ = ln[(1 + vfluid)/(1 − vfluid)] are plotted versus

the space-time rapidity y = ln[(t + x)/(t − x)]. (a) Deflagration bubble; Θdef and Θsh denote

the rapidities of the deflagration front and the shock front, respectively. (b) Detonation bubble;

here Θs is the rapidity corresponding to the sound velocity and Θdet denotes the rapidity of the

detonation front.

FIG. 2. Fluid velocities during the collision of two bubbles. The dashed line represents the

shock (detonation) front for a deflagration (detonation) bubble.
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