1,335 research outputs found

    Combining Real-Time fMRI Neurofeedback Training of the DLPFC with N-Back Practice Results in Neuroplastic Effects Confined to the Neurofeedback Target Region

    Get PDF
    In traditional fMRI, individuals respond to exogenous stimuli and are naïve to the effects of the stimuli on their neural activity patterns. Changes arising in the fMRI signal are analyzed post-hoc to elucidate the spatial and temporal activation of brain regions associated with the tasks performed. The advent of real-time fMRI has enabled a new method to systematically alter brain activity across space and time using neurofeedback training (NFT), providing a new tool to study internally-driven processes such as neuroplasticity. In this work, we combined n-back practice with fMRI-NFT of the left dorsolateral prefrontal cortex (DLPFC) to better understand the relationship between open- and closed-loop neuromodulation. FMRI data were acquired during both traditional n-back and NFT across five imaging sessions. Region-of-interest (ROI) and voxel-wise 2 × 2 within subjects ANOVAs were carried out to determine the effects of, and interaction between, training session and neuromodulation type. A main effect of training session was identified for only a single, highly focused cluster that shared spatial properties with the fMRI-NFT target region (left DLPFC). This finding indicates that combined open- and closed-loop neuroplastic enhancement techniques result in focal changes that are confined to the target area of NFT, and do not affect up- or down-stream network components that are normally engaged during working memory. Additionally, we identified a main effect of neuromodulation type for 15 clusters with significantly different activation between open- and closed-loop neuromodulation during training, 12 of which demonstrated higher activity during the open-loop neuromodulation. Our results, taken together with previous reports, indicate that fMRI-NFT combined with n-back practice leads to a highly focal volume exhibiting neuroplasticity without additional network effects

    Cascading effects of a highly specialized beech-aphid–fungus interaction on forest regeneration

    Get PDF
    Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have negative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa) colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator), ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia). A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid–fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect effects

    Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence

    Get PDF
    The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by “knocking-in” a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16 INK4a locus. We used this allele (p16 tdTom ) for the enumeration, isolation, and characterization of individual p16 INK4a -expressing cells (tdTom + ). The half-life of the knocked-in transcript was shorter than that of the endogenous p16 INK4a mRNA, and therefore reporter expression better correlated with p16 INK4a promoter activation than p16 INK4a transcript abundance. The frequency of tdTom + cells increased with serial passage in cultured murine embryo fibroblasts from p16 tdTom/+ mice. In adult mice, tdTom + cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16 INK4a and found that tdTom + macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated β-galactosidase (SA-β-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16 INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence

    Noxious weed monitoring at the U.S. Air Force Academy: year 5 results

    Get PDF
    Prepared for: U.S. Air Force Academy, Dept. of Natural Resources.March, 2010.Includes bibliographical references

    Interferon-γ signaling is associated with BRCA1 loss-of-function mutations in high grade serous ovarian cancer

    Get PDF
    Loss-of-function mutations of the breast cancer type 1 susceptibility protein (BRCA1) are associated with breast (BC) and ovarian cancer (OC). To identify gene signatures regulated by epigenetic mechanisms in OC cells carrying BRCA1 mutations, we assessed cellular responses to epigenome modifiers and performed genome-wide RNA- and chromatin immunoprecipitation-sequencing in isogenic OC cells UWB1.289 (carrying a BRCA1 mutation, BRCA1-null) and UWB1.289 transduced with wild-type BRCA1 (BRCA1+). Increased sensitivity to histone deacetylase inhibitors (HDACi) was observed in BRCA1-null vs. BRCA1+ cells. Gene expression profiles of BRCA1-null vs. BRCA1+ cells and treated with HDACi were integrated with chromatin mapping of histone H3 lysine 9 or 27 acetylation. Gene networks activated in BRCA1-null vs. BRCA1 + OC cells related to cellular movement, cellular development, cellular growth and proliferation, and activated upstream regulators included TGFβ1, TNF, and IFN-γ. The IFN-γ pathway was altered by HDACi in BRCA1+ vs. BRCA1-null cells, and in BRCA1-mutated/or low vs. BRCA1-normal OC tumors profiled in the TCGA. Key IFN-γ-induced genes upregulated at baseline in BRCA1-null vs. BRCA1+OC and BC cells included CXCL10, CXCL11, and IFI16. Increased localization of STAT1 in the promoters of these genes occurred in BRCA1-null OC cells, resulting in diminished responses to IFN-γ or to STAT1 knockdown. The IFN-γ signature was associated with improved survival among OC patients profiled in the TCGA. In all, our results support that changes affecting IFN-γ responses are associated with inactivating BRCA1 mutations in OC. This signature may contribute to altered responses to anti-tumor immunity in BRCA1-mutated cells or tumors

    Contributions of h- and Na+ /K+ pump currents to the generation of episodic and continuous rhythmic activities

    Get PDF
    Authors acknowledge studentships from the Natural Sciences and Engineering Research Council of Canada (NSERC-PGS-D: SS); Alberta Innovates (AIHS: SS and AL); Hotchkiss Brain Institute (SS and AL); and the Faculty of Veterinary Medicine (LY). This research was supported by grants from the Canadian Institute of Health Research (PW); an NSERC Discovery grant (PW); and National Institutes of Health, National Institute of Neurological Disorders and Stroke 1 R21 NS111355 (GC and Ronald L. Calabrese).Developing spinal motor networks produce a diverse array of outputs, including episodic and continuous patterns of rhythmic activity. Variation in excitability state and neuromodulatory tone can facilitate transitions between episodic and continuous rhythms; however, the intrinsic mechanisms that govern these rhythms and their transitions are poorly understood. Here, we tested the capacity of a single central pattern generator (CPG) circuit with tunable properties to generate multiple outputs. To address this, we deployed a computational model composed of an inhibitory half-center oscillator (HCO). Following predictions of our computational model, we tested the contributions of key properties to the generation of an episodic rhythm produced by isolated spinal cords of the newborn mouse. The model recapitulates the diverse state-dependent rhythms evoked by dopamine. In the model, episodic bursting depended predominantly on the endogenous oscillatory properties of neurons, with Na+/K+ ATPase pump (IPump) and hyperpolarization-activated currents (Ih) playing key roles. Modulation of either IPump or Ih produced transitions between episodic and continuous rhythms and silence. As maximal activity of IPump decreased, the interepisode interval and period increased along with a reduction in episode duration. Decreasing maximal conductance of Ih decreased episode duration and increased interepisode interval. Pharmacological manipulations of Ih with ivabradine, and IPump with ouabain or monensin in isolated spinal cords produced findings consistent with the model. Our modeling and experimental results highlight key roles of Ih and IPump in producing episodic rhythms and provide insight into mechanisms that permit a single CPG to produce multiple patterns of rhythmicity.Publisher PDFPeer reviewe

    Attitudes and tolerance of private landowners shape the African wild dog conservation landscape in the greater Kruger National Park

    Get PDF
    The survival of wildlife ultimately relies on its acceptability to humans. The African wild dog Lycaon pictus is an endangered species that often comes into conflict with humans. Currently, the only viable population in South Africa resides in the Kruger National Park (KNP). To begin to understand the acceptability of wild dogs outside this important wild dog stronghold, we interviewed private landowners (n = 186) along the KNP western and southern boundaries. Respondents generally held positive attitudes towards wild dogs and had a good knowledge of them. Attitudes were also more positive when the property was part of a conservancy, indicating that the conservation landscape for wild dogs on private land outside the KNP is promising. However, the impact of edge effects such as disease transmission should not be ignored in future research, and creative solutions for mitigating these effects must be sought to ensure the future conservation of wild dogs.Jaguar Land Rover South Africa, Vaughan de la Harpe and his Climb for Kruger Wild Dogs Expedition, Richard Bosman and GCCL2 Management Services, and Rhodes University for the Henderson Prestigious Masters Postgraduate Scholarship.http://www.int-res.com/journals/esr/esr-homeam2018Mammal Research InstituteZoology and Entomolog

    Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults.

    Get PDF
    UNLABELLED: Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation 7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo (P0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023.This work was supported by National Institutes of Health (NIH) awards AG049451, AG000279, AG053009, Colorado CTSA UL1 TR001082, and an industry contract with MitoQ Limited (MitoQ Limited provided MitoQ and some financial support). M.P. Murphy is supported by UK MRC MC_U105663142 and as a Wellcome Trust Investigator (110159/Z/15/Z)

    Deletion of the Candida albicans TLO gene family results in alterations in membrane sterol composition and fluconazole tolerance

    Get PDF
    Development of resistance and tolerance to antifungal drugs in Candida albicans can compromise treatment of infections caused by this pathogenic yeast species. The uniquely expanded C. albicans TLO gene family is comprised of 14 paralogous genes which encode Med2, a subunit of the multiprotein Mediator complex which is involved in the global control of transcription. This study investigates the acquisition of fluconazole tolerance in a mutant in which the entire TLO gene family has been deleted. This phenotype was reversed to varying degrees upon reintroduction of representative members of the alpha- and beta-TLO clades (i.e. TLO1 and TLO2), but not by TLO11, a gamma-clade representative. Comparative RNA sequencing analysis revealed changes in the expression of genes involved in a range of cellular functions, including ergosterol biosynthesis, mitochondrial function, and redox homeostasis. This was supported by the results of mass spectrometry analysis, which revealed alterations in sterol composition of the mutant cell membrane. Our data suggest that members of the C. albicans TLO gene family are involved in the control of ergosterol biosynthesis and mitochondrial function and may play a role in the responses of C. albicans to azole antifungal agents
    corecore