394 research outputs found

    Comparing non-safety with safety device sharps injury incidence data from two different occupational surveillance systems

    Get PDF
    The United States Occupational Safety and Health Administration (OSHA) Bloodborne Pathogens Standard as amended by the Needlestick Safety and Prevention Act requiring the use of safety-engineered medical devices to prevent needlesticks and sharps injuries has been in place since 2001. Injury changes over time include differences between those from non-safety compared with safety-engineered medical devices. This research compares two US occupational incident surveillance systems to determine whether these data can be generalized to other facilities and other countries either with legislation in place or considering developing national policies for the prevention of sharps injuries among healthcare personnel

    On-disk coronal rain

    Full text link
    Small and elongated, cool and dense blob-like structures are being reported with high resolution telescopes in physically different regions throughout the solar atmosphere. Their detection and the understanding of their formation, morphology and thermodynamical characteristics can provide important information on their hosting environment, especially concerning the magnetic field, whose understanding constitutes a major problem in solar physics. An example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium observed in active region loops, which consists of cool and dense chromospheric blobs falling along loop-like paths from coronal heights. So far, only off-limb coronal rain has been observed and few reports on the phenomenon exist. In the present work, several datasets of on-disk H{\alpha} observations with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are analyzed. A special family of on-disk blobs is selected for each dataset and a statistical analysis is carried out on their dynamics, morphology and temperatures. All characteristics present distributions which are very similar to reported coronal rain statistics. We discuss possible interpretations considering other similar blob-like structures reported so far and show that a coronal rain interpretation is the most likely one. Their chromospheric nature and the projection effects (which eliminate all direct possibility of height estimation) on one side, and their small sizes, fast dynamics, and especially, their faint character (offering low contrast with the background intensity) on the other side, are found as the main causes for the absence until now of the detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic

    Three sites and you are out: Ternary synergistic allostery controls aromatic amino acid biosynthesis in Mycobacterium tuberculosis.

    Get PDF
    3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step in the shikimate pathway, the pathway responsible for the biosynthesis of the aromatic amino acids Trp, Phe, and Tyr. Unlike many other organisms that produce up to three isozymes, each feedback-regulated by one of the aromatic amino acid pathway end products, Mycobacterium tuberculosis expresses a single DAH7PS enzyme that can be controlled by combinations of aromatic amino acids. This study shows that the synergistic inhibition of this enzyme by a combination of Trp and Phe can be significantly augmented by the addition of Tyr.We used X-ray crystallography, mutagenesis, and isothermal titration calorimetry studies to show that DAH7PS from M. tuberculosis possesses a Tyr-selective site in addition to the Trp and Phe sites, revealing an unusual and highly sophisticated network of three synergistic allosteric sites on one enzyme. This ternary inhibitory response, by a combination of all three aromatic amino acids, allows a tunable response of the protein to changing metabolic demands

    Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory

    Full text link
    We adopt the general formalism, which was developed in Paper I (arXiv:0708.1233) to analyze the evolution of a quantized time-dependent oscillator, to address several questions in the context of quantum field theory in time dependent external backgrounds. In particular, we study the question of emergence of classicality in terms of the phase space evolution and its relation to particle production, and clarify some conceptual issues. We consider a quantized scalar field evolving in a constant electric field and in FRW spacetimes which illustrate the two extreme cases of late time adiabatic and highly non-adiabatic evolution. Using the time-dependent generalizations of various quantities like particle number density, effective Lagrangian etc. introduced in Paper I, we contrast the evolution in these two limits bringing out key differences between the Schwinger effect and evolution in the de Sitter background. Further, our examples suggest that the notion of classicality is multifaceted and any one single criterion may not have universal applicability. For example, the peaking of the phase space Wigner distribution on the classical trajectory \emph{alone} does not imply transition to classical behavior. An analysis of the behavior of the \emph{classicality parameter}, which was introduced in Paper I, leads to the conclusion that strong particle production is necessary for the quantum state to become highly correlated in phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the first being arXiv:0708.1233 [gr-qc]; high resolution figures available from the authors on reques

    Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

    Full text link
    The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found for a particular toy model and approximate analytic solutions are obtained in the extreme cases of adiabatic and highly non-adiabatic evolution. We then work out the exact results numerically for a variety of models and compare them with the analytic results and approximations. The formalism is useful in addressing the question of emergence of classicality of the quantum state, its relation to particle production and to clarify several conceptual issues related to this. In Paper II (arXiv:0708.1237), which is a sequel to this, the formalism will be applied to analyze the corresponding issues in the context of quantum field theory in background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the second being arXiv:0708.1237 [gr-qc]; high resolution figures available from the authors on reques

    Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot

    Full text link
    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to (i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and (ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that (i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and (ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behaviour with the absorption being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on Helio-and-Astroseismolog

    The influence of cosmic-rays on the magnetorotational instability

    Full text link
    We present a linear perturbation analysis of the magnetorotational instability in the presence of the cosmic rays. Dynamical effects of the cosmic rays are considered by a fluid description and the diffusion of cosmic rays is only along the magnetic field lines. We show an enhancement in the growth rate of the unstable mode because of the existence of cosmic rays. But as the diffusion of cosmic rays increases, we see that the growth rate decreases. Thus, cosmic rays have a destabilizing role in the magnetorotational instability of the accretion discs.Comment: Accepted for publication in Astrophysics & Space Scienc

    Large-scale magnetic fields from inflation due to a CPTCPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

    Full text link
    We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the CPTCPT-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking account of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of 109\sim 10^{-9}G at the present time can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys. J.

    Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation

    Full text link
    On the basis of recent investigations, a newly developed analytical procedure is used for constructing a wide class of localized solutions of the controlled three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a variational condition for the controlling potential. Then, the above class of localized solutions are constructed as the product of the solutions of the transverse and longitudinal equations. On the basis of these exact 3D analytical solutions, a stability analysis is carried out, focusing our attention on the physical conditions for having collapsing or non-collapsing solutions.Comment: 21 pages, 14 figure

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
    corecore