54 research outputs found

    Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov amplitudes in the high-energy limit

    Get PDF
    We give a unified description of tree-level multigluon amplitudes in the high-energy limit. We represent the Parke-Taylor amplitudes and the Fadin-Kuraev-Lipatov amplitudes in terms of color configurations that are ordered in rapidity on a two-sided plot. We show that for the helicity configurations they have in common the Parke-Taylor amplitudes and the Fadin-Kuraev-Lipatov amplitudes coincide.Comment: LaTeX, 24 pages (including 4 tar-compressed uuencoded figures

    String Organization of Field Theories: Duality and Gauge Invariance

    Full text link
    String theories should reduce to ordinary four-dimensional field theories at low energies. Yet the formulation of the two are so different that such a connection, if it exists, is not immediately obvious. With the Schwinger proper-time representation, and the spinor helicity technique, it has been shown that field theories can indeed be written in a string-like manner, thus resulting in simplifications in practical calculations, and providing novel insights into gauge and gravitational theories. This paper continues the study of string organization of field theories by focusing on the question of local duality. It is shown that a single expression for the sum of many diagrams can indeed be written for QED, thereby simulating the duality property in strings. The relation between a single diagram and the dual sum is somewhat analogous to the relation between a old- fashioned perturbation diagram and a Feynman diagram. Dual expressions are particularly significant for gauge theories because they are gauge invariant while expressions for single diagrams are not.Comment: 20 pages in Latex, including seven figures in postscrip

    A new approach to multi-jet calculations in hadron collisions

    Get PDF
    We present an algorithm to evaluate the exact, tree-level matrix elements for multi-parton processes in QCD. We tested this technique, based on the recursive evaluation of the S-matrix, on processes such as gg -> n gluons and q qbar -> n gluons, with n up to 9. The summation over colour configurations is designed to allow the construction of parton-level event generators suitable to interfacing with a parton-shower evolution including the effects of colour-coherence. This leads to a fully exclusive, hadron-level description of multi-jet final states, accurately incorporating the dynamics of large jet-jet separation angles. Explicit results for the total rates and differential distributions of processes with 8 final-state partons are given.Comment: 17 pages, Latex, 5 figure

    MHV Rules for Higgs Plus Multi-Gluon Amplitudes

    Get PDF
    We use tree-level perturbation theory to show how non-supersymmetric one-loop scattering amplitudes for a Higgs boson plus an arbitrary number of partons can be constructed, in the limit of a heavy top quark, from a generalization of the scalar graph approach of Cachazo, Svrcek and Witten. The Higgs boson couples to gluons through a top quark loop which generates, for large top mass, a dimension-5 operator H tr G^2. This effective interaction leads to amplitudes which cannot be described by the standard MHV rules; for example, amplitudes where all of the gluons have positive helicity. We split the effective interaction into the sum of two terms, one holomorphic (selfdual) and one anti-holomorphic (anti-selfdual). The holomorphic interactions give a new set of MHV vertices -- identical in form to those of pure gauge theory, except for momentum conservation -- that can be combined with pure gauge theory MHV vertices to produce a tower of amplitudes with more than two negative helicities. Similarly, the anti-holomorphic interactions give anti-MHV vertices that can be combined with pure gauge theory anti-MHV vertices to produce a tower of amplitudes with more than two positive helicities. A Higgs boson amplitude is the sum of one MHV-tower amplitude and one anti-MHV-tower amplitude. We present all MHV-tower amplitudes with up to four negative-helicity gluons and any number of positive-helicity gluons (NNMHV). These rules reproduce all of the available analytic formulae for Higgs + n-gluon scattering (n<=5) at tree level, in some cases yielding considerably shorter expressions.Comment: 34 pages, 8 figures; v2, references correcte

    Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory

    Full text link
    We present the two-loop QCD helicity amplitudes for quark-gluon scattering, and for quark-antiquark annihilation into two gluons. These amplitudes are relevant for next-to-next-to-leading order corrections to (polarized) jet production at hadron colliders. We give the results in the `t Hooft-Veltman and four-dimensional helicity (FDH) variants of dimensional regularization. The transition rules for converting the amplitudes between the different variants are much more intricate than for the previously discussed case of gluon-gluon scattering. Summing our two-loop expressions over helicities and colors, and converting to conventional dimensional regularization, gives results in complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans. We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric Yang-Mills theory, obtained from the QCD amplitudes by modifying the color representation and multiplicities, and verify supersymmetry Ward identities in the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop assembly; remaining results unaffecte

    Supersymmetric Regularization, Two-Loop QCD Amplitudes and Coupling Shifts

    Get PDF
    We present a definition of the four-dimensional helicity (FDH) regularization scheme valid for two or more loops. This scheme was previously defined and utilized at one loop. It amounts to a variation on the standard 't Hooft-Veltman scheme and is designed to be compatible with the use of helicity states for "observed" particles. It is similar to dimensional reduction in that it maintains an equal number of bosonic and fermionic states, as required for preserving supersymmetry. Supersymmetry Ward identities relate different helicity amplitudes in supersymmetric theories. As a check that the FDH scheme preserves supersymmetry, at least through two loops, we explicitly verify a number of these identities for gluon-gluon scattering (gg to gg) in supersymmetric QCD. These results also cross-check recent non-trivial two-loop calculations in ordinary QCD. Finally, we compute the two-loop shift between the FDH coupling and the standard MS-bar coupling, alpha_s. The FDH shift is identical to the one for dimensional reduction. The two-loop coupling shifts are then used to obtain the three-loop QCD beta function in the FDH and dimensional reduction schemes.Comment: 44 pages, minor corrections and clarifications include

    Impact of Expressive Wrinkles on Perception of a Virtual Character’s Facial Expressions of Emotions

    Get PDF
    Facial animation has reached a high level of photorealism. Skin is rendered with grain and translucency, wrinkles are accurate and dynamic. These recent visual improvements are not fully tested for their contribution to the perceived expressiveness of virtual characters. This paper presents a perceptual study assessing the impact of different rendering modes of expressive wrinkles on users’ perception of facial expressions of basic and complex emotions. Our results suggest that realistic wrinkles increase agent’s expressivity and user’s preference, but not the recognition of emotion categories. This study was conducted using our real time facial animation platform that is designed for perceptive evaluations of affective interaction
    • …
    corecore