77,272 research outputs found

    Effect of Defects on the Line shape of Electron Paramagnetic Resonance Signals from the Single-Molecule Magnet Mn12: A Theoretical Study

    Full text link
    We herein estimate the effect of lattice defects on the line shape of electron paramagnetic resonance (EPR) signals from a single crystal of the S=10 single-molecule magnet Mn12_{12} with the external magnetic field along the crystal c axis. A second-order perturbation treatment of an effective single-spin Hamiltonian indicates that a small, random, static misorientation of the magnetic symmetry axes in a crystalline lattice can lead to asymmetric EPR peaks. Full spectra are simulated by calculating probability-distribution functions for the resonant fields, employing distributions in the tilt angle of the easy axis from the c axis, in the uniaxial anisotropy parameter, and in the gg-factor. We discuss conditions under which the asymmetry in the EPR spectra becomes prominent. The direction and magnitude of the asymmetry provide information on the specific energy levels involved with the EPR transition, the EPR frequency, and the distribution in the tilt angle.Comment: published versio

    Effects of Foreground Contamination on the Cosmic Microwave Background Anisotropy Measured by MAP

    Full text link
    We study the effects of diffuse Galactic, far-infrared extragalactic source, and radio point source emission on the cosmic microwave background (CMB) anisotropy data anticipated from the MAP experiment. We focus on the correlation function and genus statistics measured from mock MAP foreground-contaminated CMB anisotropy maps generated in a spatially-flat cosmological constant dominated cosmological model. Analyses of the simulated MAP data at 90 GHz (0.3 deg FWHM resolution smoothed) show that foreground effects on the correlation function are small compared with cosmic variance. However, the Galactic emission, even just from the region with |b| > 20 deg, significantly affects the topology of CMB anisotropy, causing a negative genus shift non-Gaussianity signal. Given the expected level of cosmic variance, this effect can be effectively reduced by subtracting existing Galactic foreground emission models from the observed data. IRAS and DIRBE far-infrared extragalactic sources have little effect on the CMB anisotropy. Radio point sources raise the amplitude of the correlation function considerably on scales below 0.5 deg. Removal of bright radio sources above a 5 \sigma detection limit effectively eliminates this effect. Radio sources also result in a positive genus curve asymmetry (significant at 2 \sigma) on 0.5 deg scales. Accurate radio point source data is essential for an unambiguous detection of CMB anisotropy non-Gaussianity on these scales. Non-Gaussianity of cosmological origin can be detected from the foreground-subtracted CMB anisotropy map at the 2 \sigma level if the measured genus shift parameter |\Delta\nu| >= 0.02 (0.04) or if the measured genus asymmetry parameter |\Delta g| >= 0.03 (0.08) on a 0.3 (1.0) deg FWHM scale.Comment: 26 pages, 7 figures, Accepted for Publication in Astrophysical Journal (Some sentences and figures modified

    Dynamic behavior of driven interfaces in models with two absorbing states

    Full text link
    We study the dynamics of an interface (active domain) between different absorbing regions in models with two absorbing states in one dimension; probabilistic cellular automata models and interacting monomer-dimer models. These models exhibit a continuous transition from an active phase into an absorbing phase, which belongs to the directed Ising (DI) universality class. In the active phase, the interface spreads ballistically into the absorbing regions and the interface width diverges linearly in time. Approaching the critical point, the spreading velocity of the interface vanishes algebraically with a DI critical exponent. Introducing a symmetry-breaking field hh that prefers one absorbing state over the other drives the interface to move asymmetrically toward the unpreferred absorbing region. In Monte Carlo simulations, we find that the spreading velocity of this driven interface shows a discontinuous jump at criticality. We explain that this unusual behavior is due to a finite relaxation time in the absorbing phase. The crossover behavior from the symmetric case (DI class) to the asymmetric case (directed percolation class) is also studied. We find the scaling dimension of the symmetry-breaking field yh=1.21(5)y_h = 1.21(5).Comment: 5 pages, 5 figures, Revte

    Electron Paramagnetic Resonance Linewidths and Lineshapes for the Molecular Magnets Fe8 and Mn12

    Full text link
    We study theoretically Electron Paramagentic Resonance (EPR) linewidths for single crystals of the molecular magnets Fe8_8 and Mn12_{12} as functions of energy eigenstates MsM_s, frequency, and temperature when a magnetic field along the easy axis is swept at fixed excitation frequency. This work was motivated by recent EPR experiments. To calculate the linewidths, we use density-matrix equations, including dipolar interactions and distributions of the uniaxial anisotropy parameter DD and the Land\'{e} gg factor. Our calculated linewidths agree well with the experimental data. We also examine the lineshapes of the EPR spectra due to local rotations of the magnetic anisotropy axes caused by defects in samples. Our preliminary results predict that this effect leads to asymmetry in the EPR spectra.Comment: 2001 MMM conferenc

    X-ray Evolution of SNR 1987A: The Radial Expansion

    Full text link
    We present the evolution of the radial expansion of SNR 1987A as measured using Chandra X-ray observations taken over the last 10 years. To characterize the complex structure of the remnant and isolate the expansion measurement, we fit the images to several empirical models including: a simple circular torus, a torus with bilateral lobes, and a torus with four tangentially extended lobes. We discuss the results of this measure in the context of the overall evolution of the supernova remnant, for which we believe we have measured the end of the free expansion phase and its transition to the adiabatic phase (at least along the equatorial ring). The timing of this event is in agreement with early predictions of the remnant evolution.Comment: Accepted for publication in ApJ, 21 pages, 4 figures, 3 table

    The suppression of hidden order and onset of ferromagnetism in URu2Si2 via Re substitution

    Full text link
    Substitution of Re for Ru in the heavy fermion compound URu2Si2 suppresses the hidden order transition and gives rise to ferromagnetism at higher concentrations. The hidden order transition of URu(2-x)Re(x)Si2, tracked via specific heat and electrical resistivity measurements, decreases in temperature and broadens, and is no longer observed for x>0.1. A critical scaling analysis of the bulk magnetization indicates that the ferromagnetic ordering temperature and ordered moment are suppressed continuously towards zero at a critical concentration of x = 0.15, accompanied by the additional suppression of the critical exponents gamma and (delta-1) towards zero. This unusual trend appears to reflect the underlying interplay between Kondo and ferromagnetic interactions, and perhaps the proximity of the hidden order phase.Comment: 8 pgs, 5 figs, ICM 2009; please refer to Phys. Rev. Lett. 103, 076404 (2009), arXiv:0908.1809 for details on magnetic scaling and phase diagram (reference added to this version

    The Power Spectrum of Galaxies in the Nearby Universe

    Get PDF
    We compute the power spectrum of galaxy density fluctuations in a recently completed redshift survey of optically-selected galaxies in the southern hemisphere (SSRS2). The amplitude and shape of the SSRS2 power spectrum are consistent with results of the Center for Astrophysics redshift survey of the northern hemisphere (CfA2), including the abrupt change of slope on a scale of 30-50Mpc/h; these results are reproducible for independent volumes of space and variations are consistent with the errors estimated from mock surveys. Taken together, the SSRS2 and CfA2 form a complete sample of 14,383 galaxies which covers one-third of the sky. The power spectrum of this larger sample continues to rise on scales up to ~ 200Mpc/h, with weak evidence for flattening on the largest scales. The SSRS2+CfA2 power spectrum and the power spectrum constraints implied by COBE are well-matched by an Omega*h ~ 0.2, Omega+lambda_0=1 CDM model with minimal biasing of optically-selected galaxies.Comment: Accepted for publication in The Astrophysical Journal Letters, Sept. 23, 1994. 10 pages uuencoded compressed postscript, including two figures. JHU-9410200

    Pure spinor computation towards open string three-loop

    Full text link
    Using the recent results in the pure spinor formulation, we lay out a ground-work towards the full momentum space amplitudes of open superstrings at three-loop. After briefly reviewing the one-loop amplitude, we directly work out the two-loop and reproduce the result that was obtained by a symmetry argument. For the three-loop, first we use the two-loop regulator as a warm-up exercise. The result vanishes. We then employ the regulator that has been recently proposed by Aisaka and Berkovits (AB). It is noted that the terms in higher power in 1λλˉ\frac{1}{\lambda\bar{\lambda}} that render the two-loop regulator disqualified for the three-loop do not contribute. This with a few other indications suggests a possibility that the AB regulator might also lead to a vanishing result. Nevertheless, we argue that it is possible to acquire the three-loop amplitude, and present a result that we anticipate to be the three-loop amplitude.Comment: 41 pages, latex, cosmetic change
    • 

    corecore