33,567 research outputs found
An augmented moment method for stochastic ensembles with delayed couplings: II. FitzHugh-Nagumo model
Dynamics of FitzHugh-Nagumo (FN) neuron ensembles with time-delayed couplings
subject to white noises, has been studied by using both direct simulations and
a semi-analytical augmented moment method (AMM) which has been proposed in a
recent paper [H. Hasegawa, E-print: cond-mat/0311021]. For -unit FN neuron
ensembles, AMM transforms original -dimensional {\it stochastic} delay
differential equations (SDDEs) to infinite-dimensional {\it deterministic} DEs
for means and correlation functions of local and global variables.
Infinite-order recursive DEs are terminated at the finite level in the
level- AMM (AMM), yielding -dimensional deterministic DEs. When a
single spike is applied, the oscillation may be induced if parameters of
coupling strength, delay, noise intensity and/or ensemble size are appropriate.
Effects of these parameters on the emergence of the oscillation and on the
synchronization in FN neuron ensembles have been studied. The synchronization
shows the {\it fluctuation-induced} enhancement at the transition between
non-oscillating and oscillating states. Results calculated by AMM5 are in
fairly good agreement with those obtained by direct simulations.Comment: 15 pages, 3 figures; changed the title with correcting typos,
accepted in Phys. Rev. E with some change
Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory
Regularization and renormalization is discussed in the context of low-energy
effective field theory treatments of two or more heavy particles (such as
nucleons). It is desirable to regulate the contact interactions from the outset
by treating them as having a finite range. The low energy physical observables
should be insensitive to this range provided that the range is of a similar or
greater scale than that of the interaction. Alternative schemes, such as
dimensional regularization, lead to paradoxical conclusions such as the
impossibility of repulsive interactions for truly low energy effective theories
where all of the exchange particles are integrated out. This difficulty arises
because a nonrelativistic field theory with repulsive contact interactions is
trivial in the sense that the matrix is unity and the renormalized coupling
constant zero. Possible consequences of low energy attraction are also
discussed. It is argued that in the case of large or small scattering lengths,
the region of validity of effective field theory expansion is much larger if
the contact interactions are given a finite range from the beginning.Comment: 7 page
Influences of an impurity on the transport properties of one-dimensional antisymmetric spin filter
The influences of an impurity on the spin and the charge transport of
one-dimensional antisymmetric spin filter are investigated using bosonization
and Keldysh formulation and the results are highlighted against those of
spinful Luttinger liquids. Due to the dependence of the electron spin
orientation on wave number the spin transport is not affected by the impurity,
while the charge transport is essentially identical with that of spinless
one-dimensional Luttinger liquid.Comment: 7 pages, 2 figures. To appear in Physical Review
Deformed Algebras from Inverse Schwinger Method
We consider a problem which may be viewed as an inverse one to the Schwinger
realization of Lie algebra, and suggest a procedure of deforming the
so-obtained algebra. We illustrate the method through a few simple examples
extending Schwinger's construction. As results, various q-deformed
algebras are (re-)produced as well as their undeformed counterparts. Some
extensions of the method are pointed out briefly.Comment: 14 pages, Jeonju University Report, Late
Generating Function for Particle-Number Probability Distribution in Directed Percolation
We derive a generic expression for the generating function (GF) of the
particle-number probability distribution (PNPD) for a simple reaction diffusion
model that belongs to the directed percolation universality class. Starting
with a single particle on a lattice, we show that the GF of the PNPD can be
written as an infinite series of cumulants taken at zero momentum. This series
can be summed up into a complete form at the level of a mean-field
approximation. Using the renormalization group techniques, we determine
logarithmic corrections for the GF at the upper critical dimension. We also
find the critical scaling form for the PNPD and check its universality
numerically in one dimension. The critical scaling function is found to be
universal up to two non-universal metric factors.Comment: (v1,2) 8 pages, 5 figures; one-loop calculation corrected in response
to criticism received from Hans-Karl Janssen, (v3) content as publishe
Discovery of GeV Emission from the Circinus galaxy with the Fermi-LAT
We report the discovery of gamma-ray emission from the Circinus galaxy using
the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope.
Circinus is a nearby (~4 Mpc) starburst with a heavily obscured Seyfert-type
active nucleus, bipolar radio lobes perpendicular to the spiral disk, and
kpc-scale jet-like structures. Our analysis of 0.1-100 GeV events collected
during 4 years of LAT observations reveals a significant (~ 7.3 sigma) excess
above the background. We find no indications of variability or spatial
extension beyond the LAT point-spread function. A power-law model used to
describe the 0.1-100 GeV gamma-ray spectrum yields a flux of
(18.8+/-5.8)x10^{-9} ph cm^{-2} s^{-1} and photon index 2.19+/-0.12,
corresponding to an isotropic gamma-ray luminosity of 3 x 10^{40} erg s^{-1}.
This observed gamma-ray luminosity exceeds the luminosity expected from
cosmic-ray interactions in the interstellar medium and inverse Compton
radiation from the radio lobes. Thus the origin of the GeV excess requires
further investigation.Comment: 7 pages, 7 figures, accepted for publication in the Astrophysical
Journa
- âŠ