621 research outputs found

    Expanded Strings in the Background of NS5-branes via a M2-brane, a D2-brane and D0-branes

    Get PDF
    Classical configurations of a M2-brane, a D2-brane and D0-branes are investigated in the background of an infinite array of M5-branes or NS5-branes. On the M2-brane, we discuss three kinds of configurations, such as a sphere, a cylinder and a torus-like one. These are stabilized by virtue of the background fluxes of M5-branes. The torus-like M2-brane configuration has winding and momentum numbers of 11th direction, and in terms of the type IIA superstring theory, this corresponds to a torus-like D2-brane with electric and magnetic fluxes on it. We also reproduce the same configuration from a non-abelian Born-Infeld action for D0-branes. It will be a construction of closed strings from D0-branes. An electric flux quantization condition on the D2-brane is also discussed in terms of D0-branes.Comment: 33 pages, 6 figures, references and footnote added, confusing expressions and introduction are improved, version to appear in JHE

    Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans

    Get PDF
    AAUnim: Pallseainsetecgonrafitremdtheavteallolhpemadeinntgalleavenldsanruertreiptiroensaenl tseidgcnoarlrsebctelyfo: re committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/ PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development

    Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm

    Full text link
    A lot of research effort has been put into community detection from all corners of academic interest such as physics, mathematics and computer science. In this paper I have proposed a Bi-Objective Genetic Algorithm for community detection which maximizes modularity and community score. Then the results obtained for both benchmark and real life data sets are compared with other algorithms using the modularity and MNI performance metrics. The results show that the BOCD algorithm is capable of successfully detecting community structure in both real life and synthetic datasets, as well as improving upon the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text overlap with arXiv:0906.061

    Polarons with a twist

    Full text link
    We consider a polaron model where molecular \emph{rotations} are important. Here, the usual hopping between neighboring sites is affected directly by the electron-phonon interaction via a {\em twist-dependent} hopping amplitude. This model may be of relevance for electronic transport in complex molecules and polymers with torsional degrees of freedom, such as DNA, as well as in molecular electronics experiments where molecular twist motion is significant. We use a tight-binding representation and find that very different polaronic properties are already exhibited by a two-site model -- these are due to the nonlinearity of the restoring force of the twist excitations, and of the electron-phonon interaction in the model. In the adiabatic regime, where electrons move in a {\em low}-frequency field of twisting-phonons, the effective splitting of the energy levels increases with coupling strength. The bandwidth in a long chain shows a power-law suppression with coupling, unlike the typical exponential dependence due to linear phonons.Comment: revtex4 source and one eps figur

    Anisotropy of the Upper Critical Field and Critical Current in Single Crystal MgB2_2

    Get PDF
    We report on specific heat, high magnetic field transport and ac−ac-susceptibility measurements on magnesium diboride single crystals. The upper critical field Hc2H_{c2} for magnetic fields perpendicular and parallel to the Mg and B planes is presented for the first time in the entire temperature range. A very different temperature dependence has been observed in the two directions which yields to a temperature dependent anisotropy with Γ∌\Gamma \sim 5 at low temperatures and about 2 near TcT_c. A peak effect is observed in susceptibility measurements for H∌H \sim 2 T parallel to the c−c-axis and the critical current density presnts a sharp maximum for HH parallel to the ab-plane.Comment: 6 pages, 5 figure

    Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model

    Full text link
    In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρGCG/ρGCG0=[Bs+(1−Bs)a−3(1+α)]1/(1+α)\rho_{GCG}/\rho_{GCG0}=[B_{s}+(1-B_{s})a^{-3(1+\alpha)}]^{1/(1+\alpha)}, where α\alpha and BsB_s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literatures. By using Markov Chain Monte Carlo method, we find the result: α=0.00126−0.00126−0.00126+0.000970+0.00268\alpha=0.00126_{- 0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs=0.775−0.0161−0.0338+0.0161+0.0307B_s= 0.775_{- 0.0161- 0.0338}^{+ 0.0161+ 0.0307}.Comment: 6 pages, 4 figure

    Ginzburg-Landau theory of vortices in a multi-gap superconductor

    Full text link
    The Ginzburg-Landau functional for a two-gap superconductor is derived within the weak-coupling BCS model. The two-gap Ginzburg-Landau theory is, then, applied to investigate various magnetic properties of MgB2 including an upturn temperature dependence of the transverse upper critical field and a core structure of an isolated vortex. Orientation of vortex lattice relative to crystallographic axes is studied for magnetic fields parallel to the c-axis. A peculiar 30-degree rotation of the vortex lattice with increasing strength of an applied field observed by neutron scattering is attributed to the multi-gap nature of superconductivity in MgB2.Comment: 11 page

    Reversible magnetization of MgB2 single crystals with a two-gap nature

    Full text link
    We present reversible magnetization measurements on MgB2 single crystals in magnetic fields up to 2.5 T applied parallel to the crystal's c-axis. This magnetization is analyzed in terms of the Hao-Clem model, and various superconducting parameters, such as the critical fields [Hc(0) and Hc2(0)], the characteristic lengths [xi(0) and lambda(0)], and the Ginzburg-Landau parameter, kappa, are derived. The temperature dependence of the magnetic penetration depth, lambda(T), obtained from the Hao-Clem analysis could not be explained by theories assuming a single gap. Our data are well described by using a two-gap model.Comment: 20 pages, 1 table, 4 figures, will be published in Phys. Rev.

    First-principles study of the effect of charge on the stability of a diamond nanocluster surface

    Get PDF
    Effects of net charge on the stability of the diamond nanocluster are investigated using the first-principles pseudopotential method with the local density approximation. We find that the charged nanocluster favors the diamond phase over the reconstruction into a fullerene-like structure. Occupying the dangling bond orbitals in the outermost surface, the excess charge can stabilize the bare diamond surface and destabilize the C-H bond on the hydrogenated surface. In combination with recent experimental results, our calculations suggest that negative charging could promote the nucleation and further growth of low-pressure diamond.open8

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
    • 

    corecore