34 research outputs found
Recommended from our members
Direct modeling of near field thermal radiation in a metamaterial.
The study of near field thermal radiation is gaining renewed interest thanks in part to their great potential in energy harvesting applications. It is well known that plasmonic or polaritonic materials exhibit strongly enhanced fields near the surface, but it is not trivial to quantitatively predict their impact on thermal radiation intensity in the near field. In this paper, we present a case study for a metamaterial that supports a surface plasmon mode in the terahertz region and consequently exhibits strongly enhanced near field thermal radiation at the plasmon resonance frequency. We implemented a finite-difference time-domain method that thermally excites the metamaterial with randomly fluctuating dipoles according to the fluctuation-dissipation theorem. The calculated thermal radiation from the metamaterial was then compared with the case of optical excitation by the plane wave incident on the metamaterial surface. The optical excitation couples only to the mode that satisfies the momentum matching condition while thermal excitation is not bound by it. As a result, the near field thermal radiation exhibits substantial differences compared to the optically excited surface plasmon modes. Under thermal excitation, the near field intensity at 1 µm away from metal surface of the metamaterial reaches a maximum enhancement of 43 fold over the far field at the frequency of the Brillouin zone boundary mode while the near field intensity under optical excitation reaches a maximum enhancement of 24 fold at the frequency of the Brillouin zone center mode. In addition, the peak near field intensity under thermal excitation shows a 4-fold enhancement over blackbody radiation with linear polarization radiation in the far field. The ability to precisely predict the local field intensity under thermal excitation is critical to the development of advanced energy devices that take advantage of this near field enhancement and could lead to the development of new generation of novel energy technology
Luminescence Properties of Thin Film Ta2 Zn3 O8 and Mn Doped Ta2 Zn3 O8
Blue luminescence from TaZZn30g and green luminescence from Mn doped TaZZn30g has been observed under low voltage cathodoluminescent excitation, In this article , the luminescence mechanisms of TaZZn30g and Mn doped TaZZn30 g are discussed in detail. The results suggest that the intrinsic blue luminescence of TaZZn30g results from a metal-to-ligand transition, whereas the green luminescence of Mn doped TaZZn30g results from the Mn 4T 1-6A I transition. The suppression of the blue intrinsic luminescence in Mn doped TaZZn30g suggests that efficient energy transfer from the host material to the Mn occurs. This energy transfer phenomenon is also discussed by comparing the photoluminescence excitation spectra of both thin film materials. Finally, the relative efficiency versus voltage and current density is demonstrated and discussed pertaining to field emission device operation
Recommended from our members
Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing
Chalcogenides are a promising platform for infrared nonlinear optics but are susceptible to structural changes during fabrication that affect their linear and nonlinear optical properties. We analyze the structure and optical properties of thermally evaporated and annealed chalcogenide films. Thermally evaporated Ge Sb Se has an increased selenium content, bandgap, and concentration of heteropolar bonds. The concentration of heteropolar bonds can be reduced by annealing above the glass transition temperature, resulting in improved optical nonlinearity. We demonstrate a 4-fold enhancement of third-order nonlinearity in Ge Sb Se chalcogenide waveguides by thermal annealing and a decrease in propagation loss from 2.5 dB/cm to 1 dB/cm as an added benefit.</p
Recommended from our members
Selective excitation of plasmon resonances with single V-point cylindrical vector beams
We use a rigorous group theoretical method to identify a class of cylindrical vector beams that can selectively excite the plasmon modes of axially symmetric plasmonic structures. Our choice of the single V-point cylindrical vector beams as the basis to decompose cylindrical beams dramatically simplifies the symmetry analysis in the group theory framework. With numerical simulations, we demonstrate that any plasmon eigenmodes, bright or dark, can be selectively excited individually or jointly. A straightforward protocol to get access to the desired plasmon mode using symmetry coupling is presented.
</p
Recommended from our members
Third-harmonic generation enhancement in an ITO nanoparticle-coated microresonator
We report a ∼3-fold enhancement of third-harmonic generation (THG) conversion efficiency using indium tin oxide (ITO) nanoparticles on the surface of an ultra-high-Q silica microsphere. This is one of the largest microcavity-based THG enhancements reported. Phase-matching and spatial mode overlap are explored numerically to determine the microsphere radius (∼29 µm) and resonant mode numbers that maximize THG. Furthermore, the ITO nanoparticles are uniformly bonded to the cavity surface by drop-casting, eliminating the need for complex fabrication. The significant improvement in THG conversion efficiency establishes functionalized ITO microcavities as a promising tool for broadband frequency conversion, nonlinear enhancement, and applications in integrated photonics.</p
Optical properties of thin film phosphors
Ph.D.Christopher J. Summer