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Abstract: We use a rigorous group theoretical method to identify a class of cylindrical vector
beams that can selectively excite the plasmon modes of axially symmetric plasmonic structures.
Our choice of the single V-point cylindrical vector beams as the basis to decompose cylindrical
beams dramatically simplifies the symmetry analysis in the group theory framework. With
numerical simulations, we demonstrate that any plasmon eigenmodes, bright or dark, can be
selectively excited individually or jointly. A straightforward protocol to get access to the desired
plasmon mode using symmetry coupling is presented.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The localized surface plasmon resonance (LSPR) of a metallic nanostructure offers strong
near-field enhancement and far-field scattering, leading to a diversity of applications such as
enhanced chemical and biological sensors [1,2], fluorescence enhancement [3], surface-enhanced
Raman scattering [4], second harmonic generation [5], plasmon-enhanced photovoltaics [6,7]
and photocatalysis [8]. To continue and accelerate future progress, it is important to gain access
to all plasmon modes supported by a nanostructure. When a nanostructure interacts with a
plane wave or a Gaussian beam, the LSPR modes which can be excited is highly dependent
on the nanostructure’s size. In the long wavelength limit where the nanostructure is much
smaller than the wavelength of the electromagnetic wave, all free electrons on the nanostructure
roughly experience the same phase of the incident field, which results in dipole LSPRs. As the
size increases, the phase retardation over the nanostructure can lead to non-dipolar multipole
LSPRs, also known as dark plasmons. Due to the vanishing of dipole moment, dark plasmons
usually radiate much less energy into the far-field than dipole plasmons and exhibit much stronger
near-field enhancements and longer lifetimes [9]. The coupling of a narrow and dark mode with
broad and bright dipole modes can also lead to plasmonic Fano resonances [10]. Therefore, dark
plasmons offer great opportunities for novel plasmonic applications.

Past work on selectively exciting dark plasmon modes has focused on using cylindrical vector
(CV) beams [9,11–14] and circularly polarized Laguerre–Gaussian beams [15–19]. Compared to
a plane wave which has homogenous polarization and phase distribution over the beam cross
section, a CV beam has a spatially varying polarization distribution and a circularly polarized
Laguerre–Gaussian beam has a spatially varying phase distribution. If a beam’s polarization
or phase distribution pattern matches with that of a dark mode LSPR, the light can couple to
the LSPR, exciting that dark mode LSPR. The most commonly used CV beams in the past
research are the azimuthally polarized and radially polarized beams due to their simple but unique
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polarization distribution. It has been demonstrated that tightly focused azimuthally and radially
polarized beams can couple into small metallic nanoparticle oligomers [11–13] and excite dark
plasmon resonances which cannot be excited by plane waves. Tightly focused radially polarized
beams have also been experimentally demonstrated to selectively excite a three-dimensionally
oriented plasmonic dipole mode in a metallic nanosphere [14]. Meanwhile, focused circularly
polarized Laguerre–Gaussian beams with well-defined orbital angular momentum have been used
to selectively excite multipole resonance modes in metallic nanodisks [15], nanodisk oligomers
[16], highly symmetrical antenna arrays [17–19], and dielectric spheres [20].

Sancho-Parramon et al. [11] suggested that symmetry is related to the selective and exclusive
excitations, but the discussion was limited to a few special structures under illumination by
azimuthally polarized or radially polarized beams. In this paper, we identify an orthonormal
mode basis set for CV beams that has a one-to-one correspondence with the plasmon modes of
any axially symmetric plasmonic structure. They allow a rigorous and concise group theoretical
analysis and enables true single-mode excitation. We refer to this cylindrically symmetric
orthonormal mode basis as single V-point (SV) cylindrical vector beams, or SV beams, in the
rest of the paper. SV beams are a set of special cases of Poincaré beams [21,22] composed
of two conjugated Laguerre–Gaussian modes. That is, an SV beam is a combination of two
Laguerre-Gaussian beams with orthogonal polarizations whose radial parameters are identical,
but the azimuthal parameters have opposite signs. SV beams are known for their “flower”
and “spider-web” shaped polarization patterns [23,24] which exhibit rich symmetry properties.
Figure 1 illustrates the field patterns of azimuthally polarized or radially polarized beams and
two examples of SV beams.

Fig. 1. Time independent polarization distribution of (a) azimuthally polarized beam, (b)
radially polarized beam, (c) a single V-point cylindrical vector (SV) beam with azimuthal
parameter l = 2 which has a “spider-web” shaped pattern, and (d) an SV beam with azimuthal
parameter l = −4 which has a “flower” shaped pattern.

Unlike circularly polarized Laguerre–Gaussian beams which have no reflection symmetry in
the planes containing the beam’s symmetry axis except for a few special cases, all SV beams have
reflection symmetry in multiple planes containing the beam’s symmetry axis as well as many
rotational symmetry elements which can be easily spotted in their polarization distribution. Thus,
SV beams are naturally more compatible with axially symmetric plasmonic structures and can be
readily classified as the basis functions for the irreducible representations of the same symmetry
point group as the plasmonic structure. In the case of tight focusing, which is often needed for
efficient coupling with nanostructures, a tightly focused SV beam can always be decomposed into
transverse and longitudinal components, each of which maintains one-to-one correspondence
with the irreducible representations, as shown later in this paper. Since the incident beams are
described by the same irreducible representation as the plasmon modes, we can readily establish
the one-to-one selection rules between the plasmon modes and SV beams without performing
any numerical simulations [15–19] or overlap integral calculations [16].

In this paper, we present a rigorous group theoretical approach to describe the symmetry of
axially symmetric plasmon modes and tightly focused SV beams by the irreducible representations
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of dihedral point groups. The one-to-one selection rules for the excitation of plasmon modes by
tightly focused SV beams are deduced by simply invoking the orthogonality theorem. Several
examples of the one-to-one selectivity are demonstrated with numerical simulations which
clearly show the fundamental advantage of using SV beams as the incident beams for selective
excitation. This paper provides a theoretical foundation for designing nanostructures that have
highly selective interactions with tightly focused cylindrical vector beams and opens a door to
the development of novel nanoscale optical devices and light sources.

2. Theoretical framework

2.1. Symmetrical nanostructures and point groups

Group theory has been widely used in photonic nanostructures like photonic crystals and
plasmonic clusters [25,26]. For a given nanostructure, one can usually find a group of symmetry
operators to fully describe its symmetry properties. For example, the symmetry of a sphere is
described by 3D orthogonal group O(3), and the symmetry of a disk is described by infinite
dihedral group D∞h. A symmetric planar structure made of a collection of identical elements,
e.g., nanospheres, can be fully described by a dihedral point group comprised of the relevant
rotation and reflection operators.

For example, a planar quadrumer composed of four identical nanospheres located at the four
corners of a square has the symmetry of point group D4h. For each of the nanospheres, the simplest
and strongest LSPR is the dipole oscillation because light couples most strongly to dipoles in
the long wavelength regime. Using the dipole plasmon modes of the four individual particles,
we can construct the symmetry-adapted hybridized-dipole eigenmodes of this quadrumer, as
shown in Fig. 2. Each of these symmetry-adapted eigenmodes belongs to one of the irreducible
representations of the D4h group.

Fig. 2. The irreducible representations of the D4h group corresponding to symmetry-adapted
hybridized-dipole eigenmodes of a planar quadrumer. A1u and B2u are not shown here
because their symmetry cannot be formed by hybridization of four individual dipoles.

Each irreducible representation has a unique set of characters corresponding to the point
group’s symmetry operations. Therefore, we can use the projection operators to determine which
of these symmetry-adapted eigenmodes belong to which irreducible representation [25]. The
projection operator for irreducible representation i is defined as:

Π̂i =
li
h
∑︁
R
χi(R) · P̂R, (1)

where li is the dimension of irreducible representation i, h is the order of the group, χi(R) is
the character of the symmetry operation R, and P̂R is the symmetry operator corresponding to
transformation R. All the needed information to construct the projection operators is listed in the
point group’s character table [27]. The character tables of the D3h, D4h and D6h point groups as
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the examples are presented in Supplement 1. As shown in Fig. 2, the 12 eigenmodes of hybridized
dipoles are categorized into 8 irreducible representations of the D4h group. If the separation
between the four nanospheres in the quadrumer is large enough to neglect the interactions among
them, all of the 12 plasmon modes would be degenerate in energy. For a small separation, the
degeneracy will be lifted into multiple energy levels each of which can be assigned to one of the
8 irreducible representations.

The 8 irreducible representations separate the plasmon modes into in-plane and out-of-plane
modes. The four linear combinations of dipole resonances that form the basis functions for the
four one-dimensional representations A1g, A2g, B1g and B2g, have no net dipole moment and thus
make dark plasmon modes. The other four linear combinations of the in-plane dipole modes do
possess net dipole moments and belong to the two-dimensional representation Eu. The choice of
basis set is not unique, and there are many ways to form a basis set for the Eu representation using
linear combinations of these four dipole modes which will be introduced later. The out-of-plane
dipole mode belonging to the one-dimensional representation A2u possesses a net dipole moment
and can be excited by plane waves at an oblique incidence. The two-dimensional out-of-plane
representation Eg has a pair of quadrupole basis functions and the one-dimensional out-of-plane
representation B1u has the octupole basis function. As additional examples, we also summarize
the eigenmodes of a planar trimer with the D3h group symmetry and a planar hexamer with the
D6h group symmetry in Supplement 1.

2.2. Single V-point cylindrical vector beams

Cylindrical vector beams are a class of axially symmetric laser beams with spatially varying
polarization, which are solutions of Maxwell’s equations under the paraxial approximation [28].
In this paper, we focus on the single V-point cylindrical vector beams (SV beams) which are
remarkably well-suited to be the basis functions for axial point groups’ representations. First, we
introduce Poincaré beams obtained by coaxial superposition of two Laguerre-Gaussian beams
with orthogonal polarizations [21,22]:

Vl1,p1,l2,p2 =
1√
2
(LG+l1,p1

eiγ + LG−
l2,p2

e−iγ) . (2)

Here LG±
l,p represents the beam profile of a Laguerre–Gaussian beam with azimuthal parameter

l, radial parameter p, and circular polarization handedness ê±. γ is an arbitrary relative phase of
the superposition. In cylindrical coordinates (r, ϕ, z), the beam profile LG±

l,p has a polarization
handedness ê± = (r̂ ± iϕ̂)e±iφ/

√
2 and phase vortex eilφ. Now consider the special case of

Poincaré beams with l1 = −l2, p1 = p2, and γ = 0 or − π/2. We define these beams as SV
beams:

SVα
l,p =

(−i)
1−α

2
√

2
(LG+l,p+αLG−

−l,p) , (3)

with parameters α = ±1, l ∈ Z, p ∈ N.
SV beams form a complete orthonormal basis for solutions of Maxwell’s equations under

paraxial approximation because each pair of conjugated circularly polarized Laguerre–Gaussian
beams create a pair of conjugated SV beams and vice versa. The E-field of an SV beam in
cylindrical coordinates (r, ϕ, z) can be written as:⎧⎪⎪⎨⎪⎪⎩

SV+l,p=Al,p(r, z) · (r̂cos[(l + 1)ϕ]−ϕ̂sin[(l + 1)ϕ]) · ei(ωt−kz),

SV−
l,p=Al,p(r, z) · (r̂sin[(l + 1)ϕ]+ϕ̂cos[(l + 1)ϕ]) · ei(ωt−kz ).

(4)

The amplitude scalar function [21] is:

Al,p(r, z) = E0
w0

w(z)

(︂
r

w(z)

)︂ |l |
exp

(︂
− r2

w2(z)

)︂
L |l |

p

(︂
2r2

w2(z)

)︂
exp

(︂
−ik r2

2R(z) + iψ(z)
)︂

, (5)

https://doi.org/10.6084/m9.figshare.14370890
https://doi.org/10.6084/m9.figshare.14370890
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where w(z) is the beam width, Ll
p is the generalized Laguerre polynomial, R(z) is the wavefront

curvature and ψ(z) is the Gouy phase.
If l = p = 0, one can get the fundamental mode SV+0,0, x-polarized Gaussian beam, and SV−

0,0,
y-polarized Gaussian beam. But if l ≠ 0, there is a point of polarization singularity (i.e., point of
undefined polarization), which is also called a V-point [29], at r = 0. Thus, we refer to this set of
beams as the “single V-point cylindrical vector beams” or “SV beams” because of the single
V-point in the center of the beam cross section in most cases (except for l = 0).

As mentioned before, one key difference between the circularly polarized Laguerre–Gaussian
basis and the SV basis is that the latter possesses reflection symmetries over planes containing
the beam’s symmetry axis. To illustrate this point, let us consider the reflection operation in the
ϕ = mπ plane, σmπ , where m is an integer. When applying the reflection to a circularly polarized
Laguerre–Gaussian beam, the angular momentum of the beam flips, but SV beams are invariant
under this operation: ⎧⎪⎪⎨⎪⎪⎩

P̂σmπ LG+l,p=LG−
−l,p ,

P̂σmπ SVα
l,p = SVα

l,p .
(6)

Therefore, while circularly polarized Laguerre–Gaussian beams cannot be related to dihedral
point groups, SV beams are basis functions for dihedral point groups. For example, we can apply
the D4h group’s irreducible representation projection operators in Eq. (1) to the SV beam SV+1,p
and obtain

Π̂iSV+1,p=

⎧⎪⎪⎨⎪⎪⎩
SV+1,p , i = B1g,

0 , otherwise.
(7)

If we do the same for the full set of SV beams, we find that each SV beam belongs to one of the 5
in-plane irreducible representations of the D4h group, and therefore can be treated as the basis
functions for these representations.

Because of the polarization singularity, there’s an intensity null at the center of SV beams
except for the l = 0 cases. For unfocused SV beams, the null might be larger than the nanostructure
under study. Efficient coupling requires good spatial overlap, which in turn calls for a tight
focusing the SV beams with a high numerical aperture (NA) lens. When tightly focused, the
radial E-field components will contribute to both the new axial and radial E-field components,
while the azimuthal E-field will simply scale in size [24]. We can separate the E-field of a focused
SV beam into its transverse component SVTα

l,p and longitudinal component SVLα
l,p.

Starting with Eq. (4), the E-field of the transverse component SVTα
l,p can be written as:⎧⎪⎪⎨⎪⎪⎩

SVT+l,p=(A
r
l,p(r, z) · r̂cos[(l + 1)ϕ]−Aφ

l,p(r, z) · ϕ̂sin[(l + 1)ϕ]) · ei(ωt−kz),

SVT−
l,p=(A

r
l,p(r, z) · r̂sin[(l + 1)ϕ]+Aφ

l,p(r, z) · ϕ̂cos[(l + 1)ϕ]) · ei(ωt−kz ).
(8)

And the longitudinal component SVLα
l,p can be written as:⎧⎪⎪⎨⎪⎪⎩

SVL+l,p=Az
l,p(r, z)cos[(l + 1)ϕ]ẑ · ei(ωt−kz),

SVL−
l,p=Az

l,p(r, z)sin[(l + 1)ϕ]ẑ · ei(ωt−kz).
(9)

The new amplitude scalar functions Ar
l,p, Aφ

l,p, Az
l,p can be calculated numerically through E-field

vector integrals [30].
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Because the two components SVTα
l,p and SVLα

l,p of the same tightly focused SV beam have
different responses under the σh reflection over the z = 0 horizontal plane:⎧⎪⎪⎨⎪⎪⎩

P̂σhSVTα
l,p = SVTα

l,p ,

P̂σhSVLα
l,p = −SVLα

l,p ,
(10)

tightly focused SV beams are no longer eigenfunctions for the σh operator, and therefore not basis
functions for any point groups which include the σh operator such as the Dnh groups. However,
if we treat SVTα

l,p and SVLα
l,p separately, they are both eigenfunctions for the σh operator and still

basis functions for the Dnh groups.
Using the D4h group as an example, we apply the projection operator of each irreducible

representation, as shown in Eq. (1), to the profile functions of every SVTα
l,p and SVLα

l,p beam
component as shown in Eq. (8) and (9). The results have the same orthogonality as Eq. (7),
i.e., each SVTα

l,p and SVLα
l,p beam component is the basis function of one of the 10 irreducible

representations of the D4h group. The complete results are summarized in Table 1. Based on
Table 1, for the 8 one-dimensional representations (A’s and B’s), one can find a full set of
transverse or longitudinal E-fields as the basis functions for one of these representations by l + 1
modulo 4. For example, any longitudinal beam component SVL+l,p satisfying mod(|l + 1|, 4) = 0
is a basis function of A2u representation. For the two-dimensional representation Eu, any pair
of transverse E-field SVT±

l,p satisfying mod(|l + 1|, 2) = 1 can be used as a basis function pair.
For example, if one chooses SVT+2,p as the “x-type” basis function of Eu representation, then the
“y-type” basis function is SVT−

2,p. Similarly, for the other two-dimensional representation Eg, if
one chooses SVL+0,p as the “x-type” basis function, then the “y-type” basis function should be
SVL−

0,p.

Table 1. The transverse & longitudinal E-field of a tightly focused SV beam belongs to
different irreducible representations of the D4h group, depending on parameters l and α.

Transverse
E-field
SVTα

l,p

Irreducible
representa-

tion

Longitudinal
E-field
SVLα

l,p Irreducible representation

mod( |l + 1 |, 4) = 0, α = +1 A1g mod( |l + 1 |, 4) = 0, α = +1 A2u

mod( |l + 1 |, 4) = 0, α = −1 A2g mod( |l + 1 |, 4) = 0, α = −1 A1u

mod( |l + 1 |, 2) = 1, α = ±1 Eu mod( |l + 1 |, 2) = 1, α = ±1 Eg

mod( |l + 1 |, 4) = 2, α = +1 B1g mod( |l + 1 |, 4) = 2, α = +1 B2u

mod( |l + 1 |, 4) = 2, α = −1 B2g mod( |l + 1 |, 4) = 2, α = −1 B1u

2.3. Selection rule for the coupling between the plasmon modes and SV beams

After categorizing the axially symmetric plasmonic structure’s plasmon eigenmodes and the
E-field of all tightly focused SV beams as the basis functions for the irreducible representations
of a certain point group, we can invoke the orthogonality theorem to state the selection rule.
“Two basis functions which belong either to different irreducible representations or to different
columns (rows) of the same representation are orthogonal [27].” From this, we identify that only
an SV beam and a plasmon mode belonging to the same irreducible representation can couple
with each other. For multidimensional representations, only an SV beam and a plasmon mode
belonging to the same column of the same representation can couple with each other.

We again use the D4h group as an example. The radial in-phase hybridized-dipole mode,
A1g, shown in Fig. 2, is a basis function of the A1g representation of the D4h group. Thus, it is
orthogonal to all SV beams except for those belonging to the same irreducible representation. That
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is, only the tightly focused SV beams with SVT+l,p components satisfying mod(|l + 1|, 4) = 0 will
have a non-zero overlap and can thus couple to the A1g plasmon mode. Similarly, the quadrupole
B1u mode can only couple to the longitudinal component of tightly focused SV−

l,p beams satisfying
mod(|l + 1|, 4) = 2. As for the two-dimensional representations, e.g., Eu representation, the
in-plane x-dipole mode and y-dipole mode are basis functions belonging to different “columns”
of the same representation. Thus, the SVT+l,p components with mod(|l + 1|, 2) = 1 which are the
“x-type” basis functions of Eu representation can couple to the in-plane x-dipole mode but not to
the in-plane y-dipole mode. Similarly, the SVT−

l,p components with mod(|l + 1|, 2) = 1 which are
the “y-type” basis functions of Eu representation can couple to the in-plane y-dipole mode but
not to the in-plane x-dipole mode. We also tabulate the transverse and longitudinal E-fields of
tightly focused SV beams as the basis functions of the irreducible representations of D3h and D6h
point groups in Supplement 1. These can be used to derive the selection rules for the plasmon
modes with D3h or D6h symmetry.

3. Results and discussion

In order to demonstrate the selection rule, we numerically simulated interactions between tightly
focused SV beam and plasmonic structures with D4h symmetry using the commercial software
Lumerical. To generate tightly focused SV beams, we first calculated the electromagnetic fields
of circularly polarized Laguerre–Gaussian beams at the focus of a high NA objective using a
multipole expansion method [20,31,32]. This method was chosen due to the common usage
of multipolar fields in scattering calculations, which are a well-known basis set in spherical
coordinates and solutions to Maxwell’s equations. In general, the incident beam after passing
through a lens can be expressed as [33]:

E⃗ ∝
∞∑︁
j=1

j∑︁
mz=−j

g(m)

j,mz
A⃗(m)

j,mz
+ g(e)j,mz

A⃗(e)
j,mz

, (11)

where j is the order of the multipole, g(m),(e)
j,mz

is a coefficient describing the weighting of each
multipolar field, (m), (e) describe whether the parity of the field is magnetic or electric, and
A⃗(m),(e)

j,mz
are the multipolar fields of given order and parity [20].

After passing through the focusing element, the field E⃗ can be related to the paraxial description
E⃗inc by evoking the assumption of aplanatic focusing, i.e., the sine condition is met, and energy
is conserved [30,32]. In principle, the problem, then, is finding E⃗ given E⃗inc and computing the
weighting coefficients, g(m),(e)

j,mz
, given by the overlap integral of E⃗ and the multipole fields. These

integrals can be simplified by using the cylindrical symmetry of the input beam [20,31,32]. The
tight focusing of SV beams can then be calculated from the addition of these fields using Eq. (3).
These results are verified using the more common Debye-Wolf integral [30]. Several generated
SV beam profiles at the focus of a NA = 0.9, f = 1 mm objective in free space are shown in
Fig. 3. Calculations assume an incident beam waist (w0) such that w0 = f · NA, and a total power
of 1 mW at the focus. The transverse and longitudinal E-fields are plotted separately, and the
profiles agree well with past results [24].

In numerical simulations, we choose gold nanorod quadrumers as the test structures to
demonstrate selective excitation of various plasmon modes belonging to different irreducible
representations. We considered three different configurations of gold nanorods, as shown in
Figs. 4(a)-(c): radial, azimuthal, and axial. All three of these structures possess the symmetry of
the D4h group. The focused SV beam generated by the method described above is imported as
the source and placed at z = −50 nm for the radial and azimuthal quadrumer simulations, and at
z = −150 nm for the axial quadrumer simulations. The beam is then allowed to propagate in the
+ẑ direction, forming a waist at the z = 0 plane where the center of each quadrumer is located.
The optical constant of gold is taken from Johnson and Christy [34]. The incident SV beams,

https://doi.org/10.6084/m9.figshare.14370890
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Fig. 3. The transverse and longitudinal E-field of a set of tightly focused SV beams on
the focal plane. The wavelength is 1 µm. The arrows in the 1st and 3rd rows represent the
instantaneous E⃗t vector, and the brightness corresponds to the normalized intensity |E⃗t |
distribution. The color map in the 2nd and 4th rows represents the instantaneous E⃗l value
normalized by |E⃗l |max, in which yellow is positive and blue is negative. Because the tight
focusing of azimuthally polarized beam SV−

−1,0 results in no longitudinal E-field, the color
map of SVL−

−1,0 only represents the noise from numerical calculation error. As time evolves,
the SVTα

l,p fields simply oscillate in the transverse direction with the same polarization
distribution and SVLαl,p fields simply oscillate in the longitudinal direction with the same
amplitude distribution. (See also Visualization 1 which shows the time evolution of a tightly
focused SV+1,0 beam’s electric vector field on focal plane.)

which are focused by a NA = 0.9, f = 1 mm objective in free space, are calculated for multiple
wavelengths across 0.5 ∼ 1.7 µm and the power is normalized to 1 mW at all wavelengths.

For each nanorod, the degeneracy between the longitudinal dipole resonance and the two
transverse dipole resonances is lifted due to the asymmetry of the nanorod geometry. The
high aspect ratio of the structure was chosen to closely reproduce the point group symmetry
and isolate the eigenmodes from each other, while the dimensions ensure individual nanorod’s
longitudinal dipole resonances in the near-infrared region. Therefore, for the radial nanorod
quadrumer, only the plasmon modes hybridized by radial dipole resonances will be excited in the
visible and near-infrared region while the plasmon modes hybridized by azimuthal or axial dipole
resonances are resonant at much shorter wavelengths. Now we can make linear combinations
of the four Eu hybridized-dipole eigenmodes in Fig. 2 and obtain the radial x(y)-dipole mode
and azimuthal x(y)-dipole mode as shown in Fig. 5. Each pair forms a basis function set for the
Eu representation. For the radial nanorod quadrumer (Fig. 4(a)), the radial dipole modes will

https://doi.org/10.6084/m9.figshare.14370791
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Fig. 4. (a-c) Illustration of the gold radial (azimuthal, axial) nanorod quadrumer. The
quadrumer shares the same symmetry axis as the incident beam and the center of each
nanorod is located at the beam’s focal plane. (d-f) Absorption cross-section of the radial
(azimuthal, axial) nanorod quadrumer with tightly focused SV+0,0 (black line), SV±

−1,0 (red
line) and SV±

1,0 (blue line) beams incident. Inset images are renderings of the quadrumer’s
hybridized-dipole plasmon mode corresponding to each excitation peak. (g-i) Scattering
cross-section of the radial (azimuthal, axial) nanorod quadrumer with tightly focused SV+0,0
(black line), SV±

−1,0 (red line) and SV±
1,0 (blue line) beams incident. In chart (i) the scattering

cross-section of axial nanorod quadrumer with tightly focused SV+
−1,0 beam incident (red

line) has been multiplied by a factor of 0.05. (See also Visualization 2 which shows the time
evolution of the surface charge distribution of the B1g mode excited by a tightly focused
SV+1,0 beam.)

produce resonances in the visible and near-infrared region, but the azimuthal dipole modes will
not. Similarly, for the azimuthal nanorod quadrumer (Fig. 4(b)), only the azimuthal dipole modes
will exhibit resonances in the visible and near-infrared region.

Fig. 5. The symmetry-adapted hybridized-dipole eigenmodes that belong to the Eu
representation. The radial x(y)-dipole mode is hybridized by only the radial dipole
resonances of the nanorods, and the azimuthal x(y)-dipole mode is hybridized by only the
azimuthal dipole resonances of the nanorods.

https://doi.org/10.6084/m9.figshare.14370794
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To demonstrate the selection rule based on the symmetry, we calculated the absorption and
scattering spectra and the surface charge distribution for each coupling cases between the 3
quadrumers and 5 different tightly focused SV beams — SV+0,0, SV±

−1,0 and SV±
1,0. As shown in

Figs. 4(d) and 4(g) for the radial nanorod quadrumer, a tightly focused SV+0,0 beam (x-polarized
Gaussian beam) can only excite the radial x-dipole plasmon mode (Eu mode) but not the A1g
and B2g plasmon modes which are orthogonal to the SV+0,0 beam. A tightly focused SV+

−1,0 beam
whose transverse component is a basis function of the A1g representation only excites the A1g
plasmon mode. Finally, a tightly focused SV−

1,0 beam whose transverse component is a basis
function of the B2g representation only excites the B2g plasmon mode.

The selection rule is further confirmed by the spectra of azimuthal and axial nanorod quadrumers.
As shown in Figs. 4(e) and 4(h), the azimuthal x-dipole plasmon mode (Eu mode) of the azimuthal
nanorod quadrumer is excited only by a tightly focused SV+0,0 beam whose transverse component
is a “x-type” basis function of the Eu representation. Similarly, a tightly focused SV−

−1,0 beam
whose transverse component is a basis function of the A2g representation only excites the A2g
plasmon mode, and a tightly focused SV+1,0 beam whose transverse component is a basis function
of the B1g representation only excites the B1g plasmon mode.

For the axial nanorod quadrumer, as shown in Figs. 4(f) and 4(i), only a tightly focused SV+
−1,0

beam whose longitudinal component belongs to the A2u representation couples to the bright
out-of-plane dipole plasmon mode at normal incidence. A tightly focused SV+0,0 beam whose
longitudinal component is a “x-type” basis function of the Eg representation only excite the
“x-type” Eg quadrupole plasmon mode. And a tightly focused SV−

1,0 beam whose longitudinal
component is a basis function of the B1u representation only excites the B1u plasmon mode, which
is an octupole mode.

These simulation results clearly show that the tightly focused SV beams selectively excite
plasmon modes with specific symmetry as classified by the group representation theory. Note that
SV beams form a complete, orthonormal basis for the solutions of paraxial wave equation. Thus,
the selection rule can be applied to any cylindrical beam which is a solution to the paraxial wave
equation by decomposing it into a linear combination of SV beams. For example, a circularly
polarized Laguerre–Gaussian beam with azimuthal parameter l = 1 and radial parameter p = 0
and polarization handedness ê+ can be written in terms of SV modes as

LG1,0
+=SV+1,0+iSV−

1,0 . (12)

According to Table 1, under tight focusing this beam is decomposed into SVT+1,0+iSVT−
1,0+SVL+1,0

+iSVL−
1,0 which belong to the D4h group’s irreducible representations B1g, B2g, B2u and B1u,

respectively. Therefore, tightly focused LG+1,0 beam should only be able to couple into the
plasmon modes belonging to these four representations.

To illustrate this point, we designed a radial nanorod octamer structure composed of 2 sets
of radial nanorod quadrumers with different lengths, as shown in Fig. 6(a). This structure still
has the D4h symmetry, but because it is largely compressed in the vertical direction, only the
in-plane hybridized-dipole plasmon modes (which are basis functions of the A1g, A2g, B1g, B2g,
Eu representations) will exhibit resonance in the 0.5 ∼ 1.7 µm wavelength range we studied.
According to the calculated cross-section shown in Figs. 6(b) and 6(c), the SV+1,0 component can
only excite the B1g mode, and the SV−

1,0 component can only excite the B2g mode as expected
from the selection rule. Meanwhile, the LG+1,0 beam, which is a combination of both SV+1,0 and
SV−

1,0, excites both plasmon modes. This example clearly shows the fundamental advantage of
using SV beams as the incident beams for selective excitation compared to Laguerre–Gaussian
beams. Specifically, the SV beams have one-to-one selectivity derived from their symmetry
properties, but the Laguerre–Gaussian beams do not.

It is noted that, although the SV+1,0 and SV−
1,0 beams are identical except for their azimuthal

orientations, they excite plasmon modes with distinct symmetry. This result shows that the
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azimuthal orientation of the SV beam must match that of the nanostructure in order to achieve
selective excitation. In general, we can build a Cartesian coordinate system based on the
nanostructure’s axial symmetry axis (z-axis) and its secondary symmetry axis (x-axis) to specify
the azimuthal orientation of SV±

l,p beams. Any azimuthally misaligned SV beam can then be
written as a linear combination of the SV±

l,p basis:

P̂Rz(θ)SV±
l,p=cosθ · SV±

l,p∓sinθ · SV∓
l,p . (13)

Fig. 6. (a) Illustration of the gold radial nanorod octamer structure composed of 2 sets
of radial nanorod quadrumers with different lengths. (b) Absorption cross-section of the
octamer with tightly focused LG+1,0 (black line), SV+1,0 (red line) and SV−

1,0 (blue line) beams
excitation. Inset images are renderings of the symmetry-adapted hybridized-dipole B1g and
B2g modes of the nanorod octamer. (c) Scattering cross-section of the octamer with tightly
focused LG+1,0 (black line), SV+1,0 (red line) and SV−

1,0 (blue line) beams excitation.

It can be treated as having both SV±
l,p components, each of which follows the selection rule

described above.
So far, we have only considered nanostructures embedded in a homogenous medium. In these

cases, the symmetry of both the plasmon modes and SV beams is described by the same point
group, Dnh, leading to a straightforward selection rule as described above. If, however, the
nanostructure is placed on a substrate, or if the nanostructure is not placed exactly at the incident
beam’s focal plane, the horizontal mirror symmetry is destroyed, and the symmetry properties
are no longer described by a Dnh point group. In these cases, since the incident beam and the
plasmonic structure still share the same axis of symmetry, we can always find a subgroup of Dnh
to describe the plasmonic structure’s symmetry. Since the basis functions of Dnh groups are also
the basis functions of their subgroups, e.g., Dn, Cnh, Cn groups, we can still use the SV beams
to decompose the incident beam and construct a correlation table similar to Table 1 for these
subgroups by applying the same selection rule.

Another situation to consider is the oblique incidence, where the incident beam and plasmonic
structure have the same center of symmetry but there is an angular misalignment between their
symmetry axes. In the near-field region of the plasmonic structure, we can decompose the
incident field into a linear combination of a normal incidence component and a perpendicular
incidence component. Both components have the same field pattern as the original beam but
are scaled in amplitude. The normal component will be subject to the same selection rule we
discussed earlier. For the perpendicular component, one needs to perform a separate mode
overlap calculation, because the plasmonic nanostructure does not exhibit a well-defined axial
symmetry for the incident light coming from the side.
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4. Conclusion

In conclusion, we have introduced a new framework for understanding the excitation of localized
surface plasmon resonances with cylindrical vector beams via symmetry coupling. The SV beams
have intrinsic reflection symmetries that make them a much more suitable basis for symmetry
analysis than the commonly used circularly polarized Laguerre–Gaussian beam basis. We utilized
the orthogonality of the SV beams and plasmon resonances naturally arising from their symmetry
properties and clearly elucidated by the group theory analysis to derive the selection rules for the
excitation without conducting any numerical simulations or overlap integral calculations. We
identified and demonstrated that SV beams have one-to-one correspondence with the plasmon
modes in axially symmetric nanostructures, thereby enabling truly selective excitation of any
mode supported by the nanostructure. Second, the SV beams allow selective excitation even in
the case of tight focusing, which is often needed for efficient coupling with nanostructures. A
tightly focused SV beam can be decomposed into transverse and longitudinal components, each
of which maintains one-to-one correspondence with the plasmon modes.

In this framework, to selectively excite a particular plasmon eigenmode, all we need is to find
which SV beams (or beam components) belong to the same irreducible representation as the
desired plasmon mode. With the possibility of synthesizing SV beams using, for example, a spatial
light modulator [35,36], we believe our work provides a plausible path toward experimentally
demonstrating selective excitation of any arbitrary plasmon mode with a tightly focused beam.
We showed that any cylindrical beam can be decomposed into a series of SV beams and by
identifying the SV beams included in the decomposition, one can determine which plasmon
modes would be excited. Therefore, our framework can not only explain the selective excitation
phenomena, but also guide the design of nanostructures and choice of incident beams to excite
desired resonance modes individually or jointly without extensive numerical calculations.

Although we limited our discussion to plasmon modes in this paper, it is straightforward to
apply the same theory to the localized resonances supported by dielectric nanostructures since the
symmetry arguments are agnostic to the choice of materials. The group theory guided symmetry
coupling method can be a powerful tool for exploring dark modes or higher order modes which
are generally difficult to excite using conventional Gaussian beams. With full access to the
localized resonances in a nanostructure, one may envision a wide range of photonic engineering
that exploits the precise control of the plasmonic near-field by combining or switching between
the individual multipole modes even when they spectrally overlap. This framework also opens
the opportunity to realize strong coupling between electronic excitations in localized emitters
and dark plasmons which can be the platform to develop novel non-linear plasmonic devices.
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