5,164 research outputs found
From Lagrangians to Events: Computer Tutorial at the MC4BSM-2012 Workshop
This is a written account of the computer tutorial offered at the Sixth
MC4BSM workshop at Cornell University, March 22-24, 2012. The tools covered
during the tutorial include: FeynRules, LanHEP, MadGraph, CalcHEP, Pythia 8,
Herwig++, and Sherpa. In the tutorial, we specify a simple extension of the
Standard Model, at the level of a Lagrangian. The software tools are then used
to automatically generate a set of Feynman rules, compute the invariant matrix
element for a sample process, and generate both parton-level and fully
hadronized/showered Monte Carlo event samples. The tutorial is designed to be
self-paced, and detailed instructions for all steps are included in this
write-up. Installation instructions for each tool on a variety of popular
platforms are also provided.Comment: 58 pages, 1 figur
A Multi-Code Analysis Toolkit for Astrophysical Simulation Data
The analysis of complex multiphysics astrophysical simulations presents a
unique and rapidly growing set of challenges: reproducibility, parallelization,
and vast increases in data size and complexity chief among them. In order to
meet these challenges, and in order to open up new avenues for collaboration
between users of multiple simulation platforms, we present yt (available at
http://yt.enzotools.org/), an open source, community-developed astrophysical
analysis and visualization toolkit. Analysis and visualization with yt are
oriented around physically relevant quantities rather than quantities native to
astrophysical simulation codes. While originally designed for handling Enzo's
structure adaptive mesh refinement (AMR) data, yt has been extended to work
with several different simulation methods and simulation codes including Orion,
RAMSES, and FLASH. We report on its methods for reading, handling, and
visualizing data, including projections, multivariate volume rendering,
multi-dimensional histograms, halo finding, light cone generation and
topologically-connected isocontour identification. Furthermore, we discuss the
underlying algorithms yt uses for processing and visualizing data, and its
mechanisms for parallelization of analysis tasks.Comment: 18 pages, 6 figures, emulateapj format. Resubmitted to Astrophysical
Journal Supplement Series with revisions from referee. yt can be found at
http://yt.enzotools.org
The Construct and Predictive Validity of Instruments Measuring the Psychosocial Correlates of Television Viewing
Background: Many studies have examined the consequences of prolonged television viewing, but few studies have examined the psychological states that contribute to this behavior. In this study, we evaluated the construct and predictive validity of psychosocial correlates of television viewing in a population of African American (AA) breast cancer survivors (BCS).
Methods: AA BCS (N = 342, Mean age = 54 years) completed measures of decisional balance, self-efficacy, family support, and time spent watching television online. Exploratory structural equation modeling (ESEM) was used to examine the construct and predictive validity as well as the differential item functioning of the instruments among population subgroups.
Results: The construct validity of the measures was supported among subgroups. The scales were measuring the construct similarly among the education and body size groups, but not among age groups. Subsequent analysis indicated that pros (β = -0.19, P \u3c 0.05), cons (β = 0.18, P \u3c 0.05), and self-efficacy (β = -0.16, P \u3c 0.05) were significantly associated with time spent watching television.
Conclusions: Minor modifications may be needed to support the validity and reliability of the decisional balance and self-efficacy subscales among older survivors. More studies are needed to modify these measures to establish sufficient levels of construct and predictive validity in this population
Antigen stimulation of peripheral blood mononuclear cells from Mycobacterium bovis infected cattle yields evidence for a novel gene expression program
<p>Abstract</p> <p>Background</p> <p>Bovine tuberculosis (BTB) caused by <it>Mycobacterium bovis </it>continues to cause substantial losses to global agriculture and has significant repercussions for human health. The advent of high throughput genomics has facilitated large scale gene expression analyses that present a novel opportunity for revealing the molecular mechanisms underlying mycobacterial infection. Using this approach, we have previously shown that innate immune genes in peripheral blood mononuclear cells (PBMC) from BTB-infected animals are repressed <it>in vivo </it>in the absence of exogenous antigen stimulation. In the present study, we hypothesized that the PBMC from BTB-infected cattle would display a distinct gene expression program resulting from exposure to <it>M. bovis</it>. A functional genomics approach was used to examine the immune response of BTB-infected (<it>n </it>= 6) and healthy control (<it>n </it>= 6) cattle to stimulation with bovine tuberculin (purified protein derivative – PPD-b) <it>in vitro</it>. PBMC were harvested before, and at 3 h and 12 h post <it>in vitro </it>stimulation with bovine tuberculin. Gene expression changes were catalogued within each group using a reference hybridization design and a targeted immunospecific cDNA microarray platform (BOTL-5) with 4,800 spot features representing 1,391 genes.</p> <p>Results</p> <p>250 gene spot features were significantly differentially expressed in BTB-infected animals at 3 h post-stimulation contrasting with only 88 gene spot features in the non-infected control animals (<it>P </it>≤ 0.05). At 12 h post-stimulation, 56 and 80 gene spot features were differentially expressed in both groups respectively. The results provided evidence of a proinflammatory gene expression profile in PBMC from BTB-infected animals in response to antigen stimulation. Furthermore, a common panel of eighteen genes, including transcription factors were significantly expressed in opposite directions in both groups. Real-time quantitative reverse transcription PCR (qRT-PCR) demonstrated that many innate immune genes, including components of the TLR pathway and cytokines were differentially expressed in BTB-infected (<it>n </it>= 8) versus control animals (<it>n </it>= 8) after stimulation with bovine tuberculin.</p> <p>Conclusion</p> <p>The PBMC from BTB-infected animals exhibit different transcriptional profiles compared with PBMC from healthy control animals in response to <it>M. bovis </it>antigen stimulation, providing evidence of a novel gene expression program due to <it>M. bovis </it>exposure.</p
Genome-Wide microRNA Binding Site Variation between Extinct Wild Aurochs and Modern Cattle Identifies Candidate microRNA-Regulated Domestication Genes
peer-reviewedThe domestication of cattle from the now-extinct wild aurochs (Bos primigenius) involved selection for physiological and behavioral traits, with underlying genetic factors that remain largely unknown. Non-coding microRNAs have emerged as key regulators of the spatio-temporal expression of target genes controlling mammalian growth and development, including in livestock species. During the domestication process, selection of mutational changes in miRNAs and/or miRNA binding sites could have provided a mechanism to generate some of the traits that differentiate domesticated cattle from wild aurochs. To investigate this, we analyzed the open reading frame DNA sequence of 19,994 orthologous protein-coding gene pairs from extant Bos taurus genomes and a single extinct B. primigenius genome. We identified miRNA binding site polymorphisms in the 3′ UTRs of 1,620 of these orthologous genes. These 1,620 genes with altered miRNA binding sites between the B. taurus and B. primigenius lineages represent candidate domestication genes. Using a novel Score Site ratio metric we have ranked these miRNA-regulated genes according to the extent of divergence between miRNA binding site presence, frequency and copy number between the orthologous genes from B. taurus and B. primigenius. This provides an unbiased approach to identify cattle genes that have undergone the most changes in miRNA binding (i.e., regulation) between the wild aurochs and modern-day cattle breeds. In addition, we demonstrate that these 1,620 candidate domestication genes are enriched for roles in pigmentation, fertility, neurobiology, metabolism, immunity and production traits (including milk quality and feed efficiency). Our findings suggest that directional selection of miRNA regulatory variants was important in the domestication and subsequent artificial selection that gave rise to modern taurine cattle
Recommended from our members
Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells
Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators
G(alpha)11 signaling through ARF6 regulates F-actin mobilization and GLUT4 glucose transporter translocation to the plasma membrane
The action of insulin to recruit the intracellular GLUT4 glucose transporter to the plasma membrane of 3T3-L1 adipocytes is mimicked by endothelin 1, which signals through trimeric G(alpha)q or G(alpha)11 proteins. Here we report that murine G(alpha)11 is most abundant in fat and that expression of the constitutively active form of G(alpha)11 [G(alpha)11(Q209L)] in 3T3-L1 adipocytes causes recruitment of GLUT4 to the plasma membrane and stimulation of 2-deoxyglucose uptake. In contrast to the action of insulin on GLUT4, the effects of endothelin 1 and G(alpha)11 were not inhibited by the phosphatidylinositol 3-kinase inhibitor wortmannin at 100 nM. Signaling by insulin, endothelin 1, or G(alpha)11(Q209L) also mobilized cortical F-actin in cultured adipocytes. Importantly, GLUT4 translocation caused by all three agents was blocked upon disassembly of F-actin by latrunculin B, suggesting that the F-actin polymerization caused by these agents may be required for their effects on GLUT4. Remarkably, expression of a dominant inhibitory form of the actin-regulatory GTPase ARF6 [ARF6(T27N)] in cultured adipocytes selectively inhibited both F-actin formation and GLUT4 translocation in response to endothelin 1 but not insulin. These data indicate that ARF6 is a required downstream element in endothelin 1 signaling through G(alpha)11 to regulate cortical actin and GLUT4 translocation in cultured adipocytes, while insulin action involves different signaling pathways
Key Hub and Bottleneck Genes Differentiate the Macrophage Response to Virulent and Attenuated Mycobacterium bovis
Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette–Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment
Quantification of Urinary Mevalonic Acid as a Biomarker of HMG-CoA Reductase Activity by a Novel Translational LC-MS/MS Method
Background: Mevalonic acid (MVA), as a product of 3-hydroxy-3-methylglutaryl coenzyme A reductase, represents a potential multipurpose biomarker in health and disease. A translational urinary MVA quantification method was developed, validated and used to demonstrate the diurnal variation of urinary MVA excretion in rats and healthy children. Methods: Urinary MVA was converted to mevalonolactone at pH 2, extracted with ethyl acetate and quantified by reversed-phase liquid chromatography-tandem mass spectrometry. Results: The assay had a dynamic range of 0.0156-10 µg/ml with precision <15% CV, accuracy 85-115% and was transferred between laboratories. Urinary MVA excretion in rats and healthy children displayed a diurnal variation consistent with the known diurnal variation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Conclusion: Urinary MVA can be quantified accurately over a wide dynamic range by a validated translational and transferable method with biomarker capability
- …