65,684 research outputs found

    Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory

    Get PDF
    Regularization and renormalization is discussed in the context of low-energy effective field theory treatments of two or more heavy particles (such as nucleons). It is desirable to regulate the contact interactions from the outset by treating them as having a finite range. The low energy physical observables should be insensitive to this range provided that the range is of a similar or greater scale than that of the interaction. Alternative schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in the sense that the SS matrix is unity and the renormalized coupling constant zero. Possible consequences of low energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region of validity of effective field theory expansion is much larger if the contact interactions are given a finite range from the beginning.Comment: 7 page

    Aliased noise in radiometric measurements

    Get PDF
    The magnitude of aliased noise that degrades the accuracy of continuous reconstructions of discrete radiometric measurements was evaluated as a function of the spatial response and sampling intervals of the radiometer, and of the resolution of the reconstructed measurements. A Wiener spectrum, representative of a wide range of scenes, was used to characterize the radiance fluctuations

    Preliminary assessment of the microwave landing system requirements for STOL operations

    Get PDF
    The results of an investigation made to assess the Microwave Landing System (MLS) Requirements for use by civil STOL aircraft are described. The principal MLS characteristics investigated in the report were signal accuracy and volume of coverage. The study utilized a nonlinear six-degree-of-freedom digital simulation of a De Havilland Buffalo C-8A aircraft. Fully automatic control of timed curve flight down to touchdown was simulated. Selected MLS accuracy and coverage parameters for the azimuth, primary elevation, flare evelation and DME signals were varied. The resulting STOL aircraft system performance in following a representative curved flight path was statistically determined. Coverage requirements for STOL aircraft operating in the terminal area environment were also investigated

    Principal Component Analysis of Cavity Beam Position Monitor Signals

    Full text link
    Model-independent analysis (MIA) methods are generally useful for analysing complex systems in which relationships between the observables are non-trivial and noise is present. Principle Component Analysis (PCA) is one of MIA methods allowing to isolate components in the input data graded to their contribution to the variability of the data. In this publication we show how the PCA can be applied to digitised signals obtained from a cavity beam position monitor (CBPM) system on the example of a 3-cavity test system installed at the Accelerator Test Facility 2 (ATF2) at KEK in Japan. We demonstrate that the PCA based method can be used to extract beam position information, and matches conventional techniques in terms of performance, while requiring considerably less settings and data for calibration

    Pure spinor computation towards open string three-loop

    Full text link
    Using the recent results in the pure spinor formulation, we lay out a ground-work towards the full momentum space amplitudes of open superstrings at three-loop. After briefly reviewing the one-loop amplitude, we directly work out the two-loop and reproduce the result that was obtained by a symmetry argument. For the three-loop, first we use the two-loop regulator as a warm-up exercise. The result vanishes. We then employ the regulator that has been recently proposed by Aisaka and Berkovits (AB). It is noted that the terms in higher power in 1λλˉ\frac{1}{\lambda\bar{\lambda}} that render the two-loop regulator disqualified for the three-loop do not contribute. This with a few other indications suggests a possibility that the AB regulator might also lead to a vanishing result. Nevertheless, we argue that it is possible to acquire the three-loop amplitude, and present a result that we anticipate to be the three-loop amplitude.Comment: 41 pages, latex, cosmetic change

    A predictive standard model for heavy electron systems

    Full text link
    We propose a predictive standard model for heavy electron systems based on a detailed phenomenological two-fluid description of existing experimental data. It leads to a new phase diagram that replaces the Doniach picture, describes the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid measured below the lattice coherence temperature, T*, seen by many different experimental probes, that marks the onset of collective hybridization, and enables one to obtain important information on quantum criticality and the superconducting/antiferromagnetic states at low temperatures. Because T* is ~J^2\rho/2, the nearest neighbor RKKY interaction, a knowledge of the single-ion Kondo coupling, J, to the background conduction electron density of states, \rho, makes it possible to predict Kondo liquid behavior, and to estimate its maximum superconducting transition temperature in both existing and newly discovered heavy electron families.Comment: 4 pages, 2 figures, submitted to J. Phys.: Conf. Ser. for SCES 201
    • …
    corecore