2,030 research outputs found

    Different Behavior of Magnetic Impurities in Crystalline and Ammorphous States of Superconductors

    Get PDF
    It has been observed that the effect of magnetic impurities in a superconductor is drastically different depending on whether the host superconductor is in a crystalline or an amorphous state. Based on the recent theory of Kim and Overhauser (KO), it is shown that as the system is getting disordered, the initial slope of the TcT_{c} depression is decreasing by a factor ℓ/ξ0\sqrt{\ell/\xi_{0}}, when the mean free path ℓ\ell becomes smaller than the BCS coherence length ξ0\xi_{0}, which is in agreement with experimental findings. In addition, for a superconductor in a crystalline state in the presence of magnetic impurities the superconducting transition temperature TcT_{c} drops sharply from about 50% of Tc0T_{c0} (for a pure system) to zero near the critical impurity concentration. This {\sl pure limit behavior} was indeed found by Roden and Zimmermeyer in crystalline Cd. Recently, Porto and Parpia have also found the same {\sl pure limit behavior} in superfluid He-3 in aerogel, which may be understood within the framework of the KO theory.Comment: 7 figures, 20 pages, latex, to appear in Superconductor Science and Technolog

    Impurity scattering in a d-wave superconductor

    Full text link
    The influence of (non-magnetic and magnetic) impurities on the transition temperature of a d-wave superconductor is studied anew within the framework of BCS theory. Pairing interaction decreases linearly with the impurity concentration. Accordingly TcT_{c} suppression is proportional to the (potential or exchange) scattering rate, 1/Ï„1/\tau, due to impurities. The initial slope versus 1/Ï„1/\tau is found to depend on the superconductor contrary to Abrikosov-Gor'kov type theory. Near the critical impurity concentration TcT_{c} drops abruptly to zero. Because the potential scattering rate is generally much larger than the exchange scattering rate, magnetic impurities will also act as non-magnetic impurities as far as the TcT_{c} decrease is concerned. The implication for the impurity doping effect in high TcT_{c} superconductors is also discussed.Comment: 12 pages and 1 figure, PlainTex, submitted to Mod. Phys. Lett. B, For more information, please see "http://taesan.kaist.ac.kr/~yjkim

    Culture supernatant of adipose stem cells can ameliorate allergic airway inflammation via recruitment of CD4+CD25+Foxp3 T cells

    Get PDF
    SDS-PAGE of supernatant after ASC cultivation. Comparison of protein composition of con sup (concentrated medium for ASCs cultivation) and ASC sup (concentrated culture supernatant after ASC cultivation for 3 days) using SDS-PAGE. Thirty micrograms of each sample was loaded into an SDS-PAGE gel. After electrophoresis, the gel was stained by Coomassie Blue (M molecular marker, arrow indicated extra proteins compared to control). (PPT 370 kb

    A New Method of Probing the Phonon Mechanism in Superconductors including MgB2_{2}

    Get PDF
    Weak localization has a strong influence on both the normal and superconducting properties of metals. In particular, since weak localization leads to the decoupling of electrons and phonons, the temperature dependence of resistance (i.e., λtr\lambda_{tr}) is decreasing with increasing disorder, as manifested by Mooij's empirical rule. In addition, Testardi's universal correlation of TcT_{c} (i.e., λ\lambda) and the resistance ratio (i.e., λtr\lambda_{tr}) follows. This understanding provides a new means to probe the phonon mechanism in superconductors including MgB2_{2}. The merits of this method are its applicability to any superconductors and its reliability because the McMillan's electron-phonon coupling constant λ\lambda and λtr\lambda_{tr} change in a broad range, from finite values to zero, due to weak localization. Karkin et al's preliminary data of irradiated MgB2_{2} show the Testardi correlation, indicating that the dominant pairing mechanism in MgB2_{2} is the phonon-mediated interaction.Comment: 9 pages, latex, 3 figure
    • …
    corecore