9,730 research outputs found
Coarsening model of cavity nucleation and thin film delamination from single-crystal BaTiO3 with proton implantation
The layer splitting mechanism of a proton implanted single crystal ferroelectric BaTiO3 thin film layer from its bulk BaTiO3 substrate has been investigated. The single crystal BaTiO3 thin film layer splits as the hydrogen gas diffuses and the internal cavity pressure increases. Ripening mechanism driven by the pressurized hydrogen in the implantation-induced damage zone makes coarsening of the cavities and causes the delamination of the thin layer during the annealing. A unique criterion relation of blister nucleation and evolution has been derived and a simplified debonding criterion is proposed in terms of dimensionless parameters based on the force equilibrium condition. A numerical simulation of two-bubble evolution and delamination of thin film is performed using a finite element method
Measuring properties of a Heavy Higgs boson in the decay
In many extensions of the standard model, there exist a few extra Higgs
bosons. Suppose a heavy neutral Higgs boson H is discovered at the LHC, one
could then investigate CP and CPT~ properties of its couplings to a pair of
bosons through . We use the helicity-amplitude method to
write down the most general form for the angular distributions of the four
final-state leptons, which can cover the case of CP-even, -odd, and -mixed
state for the Higgs boson. We figure out there are 9 types of angular
observables and all the couplings to bosons can be fully determined by
exploiting them. A Higgs-boson mass of 260 GeV below the threshold is
illustrated with full details. With a total of events of , one can determine the couplings up to 12-20\% uncertainties.Comment: 23 pages, 4 figures, 3 tables, to appear in JHE
Workload-Aware Scheduling using Markov Decision Process for Infrastructure-Assisted Learning-Based Multi-UAV Surveillance Networks
In modern networking research, infrastructure-assisted unmanned autonomous
vehicles (UAVs) are actively considered for real-time learning-based
surveillance and aerial data-delivery under unexpected 3D free mobility and
coordination. In this system model, it is essential to consider the power
limitation in UAVs and autonomous object recognition (for abnormal behavior
detection) deep learning performance in infrastructure/towers. To overcome the
power limitation of UAVs, this paper proposes a novel aerial scheduling
algorithm between multi-UAVs and multi-towers where the towers conduct wireless
power transfer toward UAVs. In addition, to take care of the high-performance
learning model training in towers, we also propose a data delivery scheme which
makes UAVs deliver the training data to the towers fairly to prevent problems
due to data imbalance (e.g., huge computation overhead caused by larger data
delivery or overfitting from less data delivery). Therefore, this paper
proposes a novel workload-aware scheduling algorithm between multi-towers and
multi-UAVs for joint power-charging from towers to their associated UAVs and
training data delivery from UAVs to their associated towers. To compute the
workload-aware optimal scheduling decisions in each unit time, our solution
approach for the given scheduling problem is designed based on Markov decision
process (MDP) to deal with (i) time-varying low-complexity computation and (ii)
pseudo-polynomial optimality. As shown in performance evaluation results, our
proposed algorithm ensures (i) sufficient times for resource exchanges between
towers and UAVs, (ii) the most even and uniform data collection during the
processes compared to the other algorithms, and (iii) the performance of all
towers convergence to optimal levels.Comment: 15 pages, 10 figure
Cloning and high-level production of a chitinase from Chromobacterium sp. and the role of conserved or nonconserved residues on its catalytic activity
A gene encoding an alkaline (pI of 8.67) chitinase was cloned and sequenced from Chromobacterium sp. strain C-61. The gene was composed of 1,611 nucleotides and encoded a signal sequence of 26N-terminal amino acids and a mature protein of 510 amino acids. Two chitinases of 54 and 52kDa from both recombinant Escherichia coli and C-61 were detected on SDS-PAGE. Maximum chitinase activity was obtained in the culture supernatant of recombinant E. coli when cultivated in TB medium for 6days at 37°C and was about fourfold higher than that from C-61. Chi54 from the culture supernatants could be purified by a single step based on isoelectric point. The purified Chi54 had about twofold higher binding affinity to chitin than to cellulose. The chi54 encoded a protein that included a type 3 chitin-binding domain belonging to group A and a family 18 catalytic domain belonging to subfamily A. In the catalytic domain, mutation of perfectly conserved residues and highly conserved residues resulted in loss of nearly all activity, while mutation of nonconserved residues resulted in enzymes that retained activity. In this process, a mutant (T218S) was obtained that had about 133% of the activity of the wild type, based on comparison of K cat value
Recent advances in hydrogen storage technologies based on nanoporous carbon materials
AbstractHydrogen is a promising energy carrier that can potentially facilitate a transition from fossil fuels to sustainable energy sources without producing harmful by-products. Prior to realizing a hydrogen economy, however, viable hydrogen storage materials must be developed. Physical adsorption in porous solids provides an opportunity for hydrogen storage under low-stringency conditions. Physically adsorbed hydrogen molecules are weakly bound to a surface and, hence, are easily released. Among the various surface candidates, porous carbons appear to provide efficient hydrogen storage, with the advantages that porous carbon is relatively low-cost to produce and is easily prepared. In this review, we summarize the preparation methods, pore characteristics, and hydrogen storage capacities of representative nanoporous carbons, including activated carbons, zeolite-templated carbon, and carbide-derived carbon. We focus particularly on a series of nanoporous carbons developed recently: metal–organic framework-derived carbons, which exhibit promising properties for use in hydrogen storage applications
Information flow between composite stock index and individual stocks
We investigate the strength and the direction of information transfer in the
U.S. stock market between the composite stock price index of stock market and
prices of individual stocks using the transfer entropy. Through the
directionality of the information transfer, we find that individual stocks are
influenced by the index of the market.Comment: 8 pages, 4 figure
- …