381 research outputs found

    The impact of Arctic sea ice loss on mid-Holocene climate.

    Get PDF
    Mid-Holocene climate was characterized by strong summer solar heating that decreased Arctic sea ice cover. Motivated by recent studies identifying Arctic sea ice loss as a key driver of future climate change, we separate the influences of Arctic sea ice loss on mid-Holocene climate. By performing idealized climate model perturbation experiments, we show that Arctic sea ice loss causes zonally asymmetric surface temperature responses especially in winter: sea ice loss warms North America and the North Pacific, which would otherwise be much colder due to weaker winter insolation. In contrast, over East Asia, sea ice loss slightly decreases the temperature in early winter. These temperature responses are associated with the weakening of mid-high latitude westerlies and polar stratospheric warming. Sea ice loss also weakens the Atlantic meridional overturning circulation, although this weakening signal diminishes after 150-200 years of model integration. These results suggest that mid-Holocene climate changes should be interpreted in terms of both Arctic sea ice cover and insolation forcing

    Microfluidic Biosensor Based on Microwave Substrate-Integrated Waveguide Cavity Resonator

    Get PDF
    A microfluidic biosensor is proposed using a microwave substrate-integrated waveguide (SIW) cavity resonator. The main objectives of this noninvasive biosensor are to detect and analyze biomaterial using tiny liquid volumes (3 μL). The sensing mechanism of our proposed biosensor relies on the dielectric perturbation phenomenon of biomaterial under test, which causes a change in resonance frequency and return loss (amplitude). First, an SIW cavity is realized on a Rogers RT/Duroid 5870 substrate. Then, a microwell made from polydimethylsiloxane (PDMS) material is loaded on the SIW cavity to observe the perturbation phenomenon. The microwell is filled with phosphate-buffered saline (PBS) solution (reference biological medium). To demonstrate the sensing behavior, the fibroblast (FB) cells from the lungs of a human male subject are analyzed and one-port S-parameters are measured. The resonance frequency of the structure with FB cells is observed to be 13.48 GHz. The reproducibility and repeatability of our proposed biosensor are successfully demonstrated through full-wave simulations and measurements. The resonance frequency of the FB-loaded microwell showed a shift of 170 MHz and 20 MHz, when compared to those of empty and PBS-loaded microwells. Its analytical limit of detection is 213 cells/μL. Our proposed biosensor is noncontact and reliable. Furthermore, it is miniaturized, inexpensive, and fabricated using simple- and easy-design processes

    Features of Microsystems for Cultivation and Characterization of Stem Cells with the Aim of Regenerative Therapy

    Get PDF
    Stem cells have infinite potential for regenerative therapy thanks to their advantageous ability which is differentiable to requisite cell types for recovery and self-renewal. The microsystem has been proved to be more helpful to stem cell studies compared to the traditional methods, relying on its advantageous feature of mimicking in vivo cellular environments as well as other profitable features such as minimum sample consumption for analysis and multiprocedures. A wide variety of microsystems were developed for stem cell studies; however, regenerative therapy-targeted applications of microtechnology should be more emphasized and gain more attractions since the regenerative therapy is one of ultimate goals of biologists and bioengineers. In this review, we introduce stem cell researches harnessing well-known microtechniques (microwell, micropattern, and microfluidic channel) in view point of physical principles and how these systems and principles have been implemented appropriately for characterizing stem cells and finding possible regenerative therapies. Biologists may gain information on the principles of microsystems to apply them to find solutions for their current challenges, and engineers may understand limitations of the conventional microsystems and find new chances for further developing practical microsystems. Through the well combination of engineers and biologists, the regenerative therapy-targeted stem cell researches harnessing microtechnology will find better suitable treatments for human disorders

    Transcription Factor Sp1 Is Involved in Expressional Regulation of Coxsackie and Adenovirus Receptor in Cancer Cells

    Get PDF
    Coxsackie and adenovirus receptor (CAR) was first known as a virus receptor. Recently, it is also known to have tumor suppressive activity such as inhibition of cell proliferation, migration, and invasion. It is important to understand how CAR expression can be regulated in cancers. Based on an existence of putative Sp1 binding site within CAR promoter, we investigated whether indeed Sp1 is involved in the regulation of CAR expression. We observed that deletion or mutation of Sp1 binding motif (−503/−498) prominently impaired the Sp1 binding affinity and activity of CAR promoter. Histone deacetylase inhibitor (TSA) treatment enhanced recruitment of Sp1 to the CAR promoter in ChIP assay. Meanwhile, Sp1 binding inhibitor suppressed the recruitment. Exogenous expression of wild-type Sp1 increased CAR expression in CAR-negative cells; meanwhile, dominant negative Sp1 decreased the CAR expression in CAR-positive cells. These results indicate that Sp1 is involved in regulation of CAR expression

    Comparison of Surgical Outcomes in Thoracolumbar Fractures Operated with Posterior Constructs Having Varying Fixation Length with Selective Anterior Fusion

    Get PDF
    PURPOSE: Surgical treatment in the case of thoracolumbar burst fractures is very controversial. Posterior instrumentation is most frequently used, however, but the number of levels to be instrumented still remains a matter of debate. MATERIALS AND METHODS: A total of 94 patients who had a single burst fracture between T11 and L2 were selected and were managed using posterior instrumentation with anterior fusion when necessary. They were divided into three groups as follows; Group I (n = 28) included patients who were operated by intermediate segment fixation, Group II (n = 32) included patients operated by long segment fixation, and Group III (n = 34) included those operated by intermediate segment fixation with a pair of additional screws in the fractured vertebra. The mean follow-up period was twenty one months. The outcomes were analyzed in terms of kyphosis angle (KA), regional kyphosis angle (RA), sagittal index (SI), anterior height compression rate, Frankel classification, and Oswestry Disability Index questionnaire. RESULTS: In Groups II and III, the correction values of KA, RA, and SI were much better than in Group I. At the final follow up, the correction values of KA (6.3 and 12.1, respectively) and SI (6.2 and 12.0, respectively) were in Groups II and III found to be better in the latter. CONCLUSION: The intermediate segment fixation with an additional pair of screws at the fracture level vertebra gives results that are comparable or even better than long segment fixation and gives an advantage of preserving an extra mobile segment.ope

    A Highly Efficient CRISPR-Cas9-Mediated Large Genomic Deletion in Bacillus subtilis

    Get PDF
    In Bacillus subtilis, large genomic deletions have been carried out for genome reduction, antibiotic overproduction, and heterologous protein overexpression. In view of the eco-friendliness of B. subtilis, it is critical that engineering preserves its food-grade status and avoids leaving foreign DNA in the genome. Existing methods of generating large genomic deletions leave antibiotic resistance markers or display low mutation efficiency. In this study, we introduced a clustered regularly interspaced short palindromic repeat-derived genome engineering technique to develop a highly efficient method of generating large genomic deletions in B. subtilis without any trace of foreign DNA. Using our system, we produced 38 kb plipastatin-synthesizing pps operon deletion with 80% efficiency. The significant increase in mutation efficiency was due to plasmids-delivered Streptococcus pyogenes-originated SpCas9, target-specific sgRNA and a donor DNA template, which produces SpCas9/sgRNA endonuclease complex continuously for attacking target chromosome until the mutagenic repair occurs. Our system produced single-gene deletion in spo0A (∼100%), point mutation (∼68%) and GFP gene insertion (∼97%) in sigE and demonstrated its broad applicability for various types of site-directed mutagenesis in B. subtilis
    corecore