54 research outputs found

    Partial Teleportation of Entanglement in the Noisy Environment

    Get PDF
    Partial teleportation of entanglement is to teleport one particle of an entangled pair through a quantum channel. This is conceptually equivalent to quantum swapping. We consider the partial teleportation of entanglement in the noisy environment, employing the Werner-state representation of the noisy channel for the simplicity of calculation. To have the insight of the many-body teleportation, we introduce the measure of correlation information and study the transfer of the correlation information and entanglement. We find that the fidelity gets smaller as the initial-state is entangled more for a given entanglement of the quantum channel. The entangled channel transfers at least some of the entanglement to the final state.Comment: 8 pages, 2 figure

    Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles.

    Get PDF
    This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic

    Fabrication of a spherical inclusion phantom for validation of magnetic resonance-based magnetic susceptibility imaging

    Get PDF
    © 2019 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Fabrication of a spherical multi-compartment MRI phantom is demonstrated that can be used to validate magnetic resonance (MR)-based susceptibility imaging reconstruction. The phantom consists of a 10 cm diameter gelatin sphere that encloses multiple smaller gelatin spheres doped with different concentrations of paramagnetic contrast agents. Compared to previous multi-compartment phantoms with cylindrical geometry, the phantom provides the following benefits: (1) no compartmental barrier materials are used that can introduce signal voids and spurious phase; (2) compartmental geometry is reproducible; (3) spherical susceptibility boundaries possess a ground-truth analytical phase solution for easy experimental validation; (4) spherical geometry of the overall phantom eliminates background phase due to air-phantom boundary in any scan orientation. The susceptibility of individual compartments can be controlled independently by doping. During fabrication, formalin crosslinking and water-proof surface coating effectively blocked water diffusion between the compartments to preserve the phantom’s integrity. The spherical shapes were realized by molding the inner gel compartments in acrylic spherical shells, 3 cm in diameter, and constructing the whole phantom inside a larger acrylic shell. From gradient echo images obtained at 3T, we verified that the phantom produced phase images in agreement with the theoretical prediction. Factors that limit the agreement include: air bubbles trapped at the gel interfaces, imperfect magnet shimming, and the susceptibility of external materials such as the phantom support hardware. The phantom images were used to validate publicly available codes for quantitative susceptibility mapping. We believe that the proposed phantom can provide a useful testbed for validation of MR phase imaging and MR-based magnetic susceptibility reconstructio

    Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics

    Get PDF
    We demonstrate a novel non-contact method: acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), capable of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer is utilized for both detection of phatoacoustic signals and generation of acoustic radiation force. To track cell membrane displacements by acoustic radiation force, functionalized single-walled carbon nanotubes are attached to cell membrane. Using the developed microscopy evaluated with agar phantoms, the mechanics of highly- and weakly-metastatic breast cancer cells are quantified. These results clearly show that the PA-ARFI microscopy may serve as a novel tool to probe mechanics of single breast cancer cells. © 2014 Optical Society of America.1

    Optimal conclusive teleportation of a d-dimensional unknown state

    Get PDF
    We formulate a conclusive teleportation protocol for a system in d-dimensional Hilbert space utilizing the positive operator valued measurement at the sending station. The conclusive teleportation protocol ensures some perfect teleportation events when the channel is only partially entangled, at the expense of lowering the overall average fidelity. We find the change of the fidelity as optimizing the conclusive teleportation events and discuss how much information remains in the inconclusive parts of the teleportation.Comment: 7 pages, 1 figure; figure correcte

    Numerical Simulation and Design of a High-Temperature, High-Pressure Fluid Transport Pipe

    No full text
    When designing a hand caliber with a high-temperature, high-pressure internal fluid transport pipe, reliability, safe use, and performance must be considered. Reliability refers to the stress caused by thermo-mechanical load; safe use refers to the low-temperature burns that might occur upon contact, and high-temperature burns caused by gas leakage occurring in the cylinder gap; and performance refers to projectile velocity. In this study, numerical simulation methods for heat transfer, structure analysis, and gas leakage are proposed so that solutions can be designed to account for the above three criteria. Furthermore, a hand-caliber design guide is presented. For heat transfer and structural analysis, mesh size, the transient convective heat transfer coefficient, and boundary conditions are described. Regarding gas leakage, methods reflecting projectile motion and determination of the molecular weight of the propellant are described. As a result, a designed hand caliber will have a high reliability, because the thermo-mechanical stress is lower than the yield stress. There will be little risk of low-temperature burns, but there will be a high temperature-burn risk, owing to gas leakage in the cylinder gap. The larger the cylinder-gap size, the greater the gas leakage and the smaller projectile velocity. The presented numerical simulation method can be applied to evaluate various aspects of other structures that require high-temperature, high-pressure fluid-transport pipes

    Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator

    No full text
    The triboelectric nanogenerator (TENG) is a promising research topic for the conversion of mechanical to electrical energy and its application in different fields. Among the various applications, self-powered bio-medical sensing application has become popular. The selection of a wide variety of materials and the simple design of devices has made it attractive for the applications of real-time self-powered healthcare sensing systems. Human activity is the source of mechanical energy which gets converted to electrical energy by TENG fitted to different body parts for the powering up of the biomedical sensing and detection systems. Among the various techniques, wearable sensing systems developed by TENG have shown their merit in the application of healthcare sensing and detection systems. Some key studies on wearable self-powered biomedical sensing systems based on TENG which have been carried out in the last seven years are summarized here. Furthermore, the key features responsible for the highly sensitive output of the self-powered sensors have been briefed. On the other hand, the challenges that need to be addressed for the commercialization of TENG-based biomedical sensors have been raised in order to develop versatile sensitive sensors, user-friendly devices, and to ensure the stability of the device over changing environments

    Channel Attention Module With Multiscale Grid Average Pooling for Breast Cancer Segmentation in an Ultrasound Image

    No full text
    Breast cancer accounts for the second-largest number of deaths in women around the world, and more than 8% of women will suffer from the disease in their lifetime. Mortality due to breast cancer can be reduced by its early and precise diagnosis. Many studies have investigated methods for segmentation, and computer-aided diagnosis based on deep learning techniques, in particular, has recently gained attention. However, recently proposed methods such as fully convolutional network (FCN), SegNet, and U-Net still need to be further improved to provide better semantic segmentation when diagnosing breast cancer by ultrasound imaging, because of their low performance. In this article, we propose a channel attention module with multiscale grid average pooling (MSGRAP) for the precise segmentation of breast cancer regions in ultrasound images. We demonstrate the effectiveness of the channel attention module with MSGRAP for semantic segmentation and develop a novel semantic segmentation network with the proposed attention module for the precise segmentation of breast cancer regions in ultrasound images. While a conventional convolutional operation cannot use global spatial information on input images and only use the small local information in a kernel of a convolution filter, the proposed attention module allows using both global and local spatial information. In addition, through ablation studies, we come up with a network architecture for precise breast cancer segmentation in an ultrasound image. The proposed network was constructed with an open-source breast cancer ultrasound image data set, and its performance was compared with those of other state-of-the-art deep-learning models for the segmentation of breast cancer. The experimental results showed that our network outperformed other segmentation methods, and the proposed channel attention module improved the performance of the network for breast cancer segmentation in ultrasound images. © 1986-2012 IEEE.FALS
    corecore