20,261 research outputs found

    On a New Approach for Constructing Wormholes in Einstein-Born-Infeld Gravity

    Full text link
    We study a new approach for the wormhole construction in Einstein-Born-Infeld gravity, which does not require exotic matters in the Einstein equation. The Born-Infeld field equation is not modified from "coordinate independent" conditions of continuous metric tensor and its derivatives, even though the Born-Infeld fields have discontinuities in their derivatives at the throat in general. We study the relation of the newly introduced conditions with the usual continuity equation for the energy-momentum tensor and the gravitational Bianchi identity. We find that there is no violation of energy conditions for the Born-Infeld fields contrary to the usual approaches. The exoticity of energy-momentum tensor is not essential for sustaining wormholes. Some open problems are discussed.Comment: Minor revision to improve the clarity, Corrected typos, Added reference and footnot

    Untitled

    Get PDF

    implications for paleobiogeography, paleoecology, and evolution, with a taxonomic review of Mongolian armored dinosaurs

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2022. 8. ์ด์œต๋‚จ.๊ฐ‘์˜ท๊ณต๋ฃก(Ankylosauria)์€ ์‚ฌ์กฑ๋ณดํ–‰์ธ ์ดˆ์‹ ๊ณต๋ฃก์˜ ํ•œ ๋ฌด๋ฆฌ๋กœ ๊ณจํŽธ(้ชจ็‰‡, osteoderm)๋“ค์ด ์œตํ•ฉ๋œ ๋‘๊ฐœ๊ณจ(้ ญ่“‹้ชจ, skull)๊ณผ ๋ชธํ†ต์˜ ๋ฐฐ์ธก๋ฉด(่ƒŒๅด้ข, dorsolateral)์— ๊ณจํŽธ๋“ค์ด ๋ถ€์‹œ์ƒ(ๅ‰ฏ็Ÿข็‹€, parasagittal)์œผ๋กœ ๋ฎ๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค. 2007๋…„๊ณผ 2008๋…„ ์‚ฌ์ด์— ํ•œ๊ตญ-๋ชฝ๊ณจ ๊ตญ์ œ๊ณต๋ฃกํƒ์‚ฌ์— ์˜ํ•ด ๊ฐ‘์˜ท๊ณต๋ฃก ํ‘œ๋ณธ๋“ค์ด ๊ณ ๋น„์‚ฌ๋ง‰์—์„œ ์ถ”๊ฐ€๋กœ ๋ฐœ๊ฒฌ๋๋‹ค. ๋ณธ ํ‘œ๋ณธ๋“ค์€ ์ƒ๋ถ€ ๋ฐฑ์•…๊ธฐ Cenomanianโ€“Turonian ๋ฐ”์–€์‹œ๋ ˆ์ธต(Bayanshiree Formation), middleโ€“upper Campanian ๋ฐ”๋ฃฌ๊ณ ์šง์ธต(Baruungoyot Formation), ๊ทธ๋ฆฌ๊ณ  upper Campanianโ€“lower Maastrichtian ๋„ค๋ฉ”๊ฒŸ์ธต(Nemegt Formation)์—์„œ ๋ฐœ๊ฒฌ๋๋‹ค. ๋ฐ”์–€์‹œ๋ ˆ(Bayan Shiree)์˜ ๋ฐ”์–€์‹œ๋ ˆ์ธต์—์„œ ์‚ฐ์ถœ๋œ ์ƒˆ๋กœ์šด ๋‘๊ฐœ๊ณจ ํ‘œ๋ณธ ์„ธ ๊ฐœ๋ฅผ ํ†ตํ•ด Talarurus plicatospineus์˜ ์ •์˜๋ฅผ ์žฌ์ •๋ฆฝํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํž๋ฉ˜์žํ”„(Hermiin Tsav)์˜ ๋„ค๋ฉ”๊ฒŸ์ธต์—์„œ ์‚ฐ์ถœ๋œ ๋‘๊ฐœ๊ณจ์„ ํฌํ•จํ•œ ๋ถ€๋ถ„์ ์ธ ๋‘ํ›„๊ณจ๊ฒฉ(้ ญๅพŒ้ชจๆ ผ, postcranial)์€ ์ƒˆ๋กœ์šด ๋ถ„๋ฅ˜๊ตฐ์œผ๋กœ ํ™•์ธ๋ผ Tarchia tumanovae๋กœ ๋ช…๋ช…๋๋‹ค. ํž๋ฉ˜์žํ”„์˜ ๋ฐ”๋ฃฌ๊ณ ์šง์ธต์—์„œ ์‚ฐ์ถœ๋œ ์ƒˆ๋กœ์šด ๋‘ํ›„๊ณจ๊ฒฉ ํ‘œ๋ณธ์€ ๋ถˆ๋ถ„๋ช…ํ•œ ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ(Ankylosauridae)๋กœ ๋ถ„๋ฅ˜๋๋‹ค. ๊ณ„ํ†ต๋ฐœ์ƒ ๋ถ„์„(phylogenetic analysis) ๊ฒฐ๊ณผ๋Š” Talarurus์†์ด Saichania chulsanensis, Tarchia kielanae, ๊ทธ๋ฆฌ๊ณ  Zaraapelta nomadis๋ฅผ ํฌํ•จํ•œ ์•„์‹œ์•„์˜ ํŒŒ์ƒ๋œ ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค์•„๊ณผ(Ankylosaurinae)์˜ ์ž๋งค ๋ถ„๋ฅ˜๊ตฐ(sister taxon)์ž„์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค์•„๊ณผ์˜ ์•„์‹œ์•„์—์„œ ๋ถ์•„๋ฉ”๋ฆฌ์นด ๋Œ€๋ฅ™์œผ๋กœ์˜ ์ด์ฃผ(็งปไฝ, migration)๊ฐ€ Cenomanian ์ด์ „์— ์žˆ์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. Talarurus์†๊ณผ ๋ฐ”์–€์‹œ๋ ˆ์ธต์˜ ๋˜ ๋‹ค๋ฅธ ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ์ธ Tsagantegia์† ์‚ฌ์ด์˜ ์ฃผ๋‘ฅ์ด ํ˜•ํƒœ ์ฐจ์ด๋Š” ์ด๋“ค์˜ ์ƒํƒœ์ง€์œ„ ๋ถ„ํ• (niche partitioning)์„ ์‹œ์‚ฌํ•œ๋‹ค. Tar. tumanovae์˜ ์ธ๊ณจ๋ฟ”(้ฑ—้ชจโ€“, squamosal horn)์€ ์™ธํ”ผ์ธต(ๅค–็šฎๅฑค, external dermal layer)๊ณผ ๊ทธ ๋ฐ‘์— ์žˆ๋Š” ์ง„์ •์ธ๊ณจ๋ฟ”(็œžๆƒ…้ฑ—้ชจโ€“, squamosal horn proper)๋กœ ๋‚˜๋‰œ๋‹ค. ์™ธํ”ผ์ธต์˜ ๋ถˆ๊ทœ์น™ํ•œ ๋ณต๋ฉด(่…น้ข, ventral) ๊ฐ€์žฅ์ž๋ฆฌ๋Š” ํก์ˆ˜๋œ ํ‘œ๋ฉด์„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ผ๋ถ€ ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค์•„๊ณผ์˜ ์ธ๊ณจ๋ฟ”์ด ๊ทน๋‹จ์ ์ธ ๊ฐœ์ฒด๋ฐœ์ƒ์ (ontogenetic) ๋ณ€ํ™”๋ฅผ ๊ฒช์—ˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ ๋ฐฐ์ฒœ์ถ”(่ƒŒ่–ฆๆคŽ, dorsosacral vertebra)์˜ ๋Š‘๊ณจ(๏ฅ“้ชจ, rib) ๋ถ€์œ„์™€ ๊ผฌ๋ฆฌ์˜ ๊ตญ์†Œ์  ๊ณจ์ ˆ ํ”์ ์€ ์ด๋“ค์˜ ์„ธ๋ ฅํˆฌ์Ÿํ–‰์œ„(agonistic behavior)์˜ ์ฆ๊ฑฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. Tar. tumanovae์˜ ๋น„๋Œ€์นญ์ธ ๊ผฌ๋ฆฌ๊ณค๋ด‰(tail club)์€ ์ด๋Ÿฐ ํ–‰์œ„๋กœ ์ธํ•œ ๋ผˆ์˜ ๋น„์ •์ƒ์ ์ธ ์„ฑ์žฅ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ(Ankylosauridae)์˜ ์„ญ์‹๋ฐฉ๋ฒ•์€ ์ƒ๋ถ€ ๋ฐฑ์•…๊ธฐ middle Campanianโ€“early Maastrichtian ์ค‘์— ๋Œ€๋Ÿ‰์„ญ์‹(bulk-feeding)์—์„œ ์„ ํƒ์  ์„ญ์‹(selective feeding)์œผ๋กœ ๋ฐ”๋€ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ์˜ ์ด๋Ÿฐ ์ƒํƒœ์ง€์œ„ ๋ณ€ํ™”๋Š” ์„œ์‹์ง€ ๋ณ€ํ™”์™€ ๋‹ค๋ฅธ ๋Œ€๋Ÿ‰์„ญ์‹ ์ดˆ์‹ ๊ณต๋ฃก๊ณผ์˜ ๊ฒฝ์Ÿ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ์•„์‹œ์•„์˜ ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ๋Š” ํ›„๋‘๊ณจ๊ฒฉ์ด ๋ปฃ๋ปฃํ•ด์ง€๊ณ  ๋’ท๋ฐœ์˜ ์ง€๊ณจ(่ถพ้ชจ, pedal phalanges) ์ˆ˜๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ™”ํ–ˆ๋‹ค. ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ์—๋Š” ๋‘ ๊ฐ€์ง€ ํ˜•ํƒœ์˜ ์ธก๋ฉด(ๅด้ข, flank) ๊ฐ‘์˜ท, ํ•˜๋‚˜๋Š” ๊ฐ€์‹œํ˜•(spine-like)์˜ ๊ณจํŽธ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์šฉ๊ณจ(๏ง„้ชจ, keel)์ด ๋ฐœ๋‹ฌํ•œ ๋Šฅํ˜•(่ฑๅฝข, rhomboid)์˜ ๊ณจํŽธ์ด ์žˆ์Œ์ด ํ™•์ธ๋๋‹ค. ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ์—์„œ๋Š” ๋•…ํŒŒ๊ธฐ์™€ ๊ด€๋ จ๋œ ๋…ํŠนํ•œ ํ•ด๋ถ€ํ•™์  ํŠน์ง•๋“ค๋„ ํ™•์ธ๋๋‹ค. ๋•…ํŒŒ๊ธฐ์™€ ๊ด€๋ จ๋œ ํŠน์ง•๋“ค๋กœ๋Š” ๋ฐฐ๋ณต(่ƒŒ่…น, dorsoventral) ๋ฐฉํ–ฅ์œผ๋กœ ๋‚ฉ์ž‘ํ•œ ๋ฐฉ์ถ”ํ˜•(็ดก้Œ˜ๅฝข, fusiform)์˜ ๋ชธํ†ต, ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์œตํ•ฉ๋œ ์ฒ™์ถ”, ์ „ํ›„(ๅ‰ๅพŒ, anteroposteriorly) ๋ฐฉํ–ฅ์œผ๋กœ ๋„“์€ ๋Š‘๊ณจ, ์ž˜ ๋ฐœ๋‹ฌ๋œ ์‚ผ๊ฐํ‰๊ทผ๋Šฅ์„ (ไธ‰่ง’่ƒธ็ญ‹๏ฅ–็ทš, deltopectoral crest)์„ ๊ฐ€์ง„ ๊ฐ•๊ฑดํ•œ ์ƒ์™„๊ณจ(ไธŠ่…•้ชจ, humerus), ์ž˜ ๋ฐœ๋‹ฌ๋œ ์ฃผ๋‘๋Œ๊ธฐ(่‚˜้ ญ็ช่ตท, olecranon process)๋ฅผ ๊ฐ€์ง„ ์งง์€ ์ฒ™๊ณจ(ๅฐบ้ชจ, ulna), ๋ชจ์ข…์‚ฝํ˜•(trowel-like) ์•ž๋ฐœ, ๊ทธ๋ฆฌ๊ณ  ์ง€๊ณจ ์ˆ˜๊ฐ€ ์ค„์–ด๋“  ๋’ท๋ฐœ์ด ์žˆ๋‹ค. ๋น„๋ก ๊ตด์ฐฉํ˜•(fossorial) ๋™๋ฌผ์€ ์•„๋‹ˆ์—ˆ์ง€๋งŒ, ์•ˆํ‚ฌ๋กœ์‚ฌ์šฐ๋ฃจ์Šค๊ณผ๋Š” ์ž๊ธฐ ๋ฐฉ์–ด์™€ ์ƒ์กด์„ ์œ„ํ•ด ๋•…์„ ์ž˜ ํŒŒํ—ค์ณค์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋ชฝ๊ณจ์—์„œ ์•Œ๋ ค์ง„ 10์ข…์˜ ๊ฐ‘์˜ท๊ณต๋ฃก์— ๋Œ€ํ•œ ๋ถ„๋ฅ˜ํ•™์  ๋ฆฌ๋ทฐ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค.Ankylosaurs are a group of dinosaurs that are quadrupedal, herbivorous, and have a heavily ornamented skull and parasagittal rows of osteoderms covering the dorsolateral surfaces of the body. Additional ankylosaur specimens were discovered in the Gobi Desert of Mongolia by the Korea-Mongolia International Dinosaur Expedition between 2007 and 2008. They were excavated from the Upper Cretaceous Bayanshiree (Cenomanianโ€“Turonian), Baruungoyot (middleโ€“upper Campanian), and Nemegt (upper Campanianโ€“lower Maastrichtian) formations. Based on the three new skulls from the Bayanshiree Formation of Bayan Shiree cliffs, the diagnosis of Talarurus plicatospineus is revised. A new skull with a partial postcranial skeleton collected from the Nemegt Formation in Hermiin Tsav turned out to be a new taxon, Tarchia tumanovae sp. nov. A new articulated postcranial specimen from the Baruungoyot Formation in Hermiin Tsav is classified as an indeterminate ankylosaurid dinosaur. The phylogenetic analysis showed that Talarurus is sister to the clade that includes the derived Asian ankylosaurines (Saichania chulsanensis, Tarchia kielanae, and Zaraapelta nomadis). It also showed that there was the dispersal of ankylosaurines from Asia to western North America before the Cenomanian. The rostral differences between Talarurus and Tsagantegia, another ankylosaurine from the Bayanshiree Formation, suggest possible niche partitioning among these taxa. The squamosal horns of Tar. tumanovae are divided into the external dermal layer and the underlying squamosal horn proper. The irregular ventral margin of the base of the upper dermal layer may represent a resorption surface, suggesting that the squamosal horns of some ankylosaurines underwent extreme ontogenetic remodeling. Localized pathologies on the dorsosacral ribs and the tail provide evidence of agonistic behavior. The tail club knob asymmetry of Tar. tumanovae resulted from restricted bone growth due to tail club strikes. Furthermore, ankylosaurid diets shifted from low-level bulk feeding to selective feeding during the Baruungoyot and the Nemegt โ€œageโ€ (middle Campanianโ€“lower Maastrichtian). This ankylosaurid niche shifting might have responded to habitat change and competition with other bulk-feeding herbivores. Asian ankylosaurids evolved rigid bodies with a decreased number of pedal phalanges. There were also at least two forms of flank armor within Ankylosauridae, one with spine-like osteoderms and the other with keeled rhomboidal osteoderms. Unique anatomical features related to digging are present in Ankylosauridae, such as dorsoventrally flattened and fusiform body shapes, extensively fused series of vertebrae, anteroposteriorly broadened dorsal ribs, a robust humerus with a well-developed deltopectoral crest, a short and robust ulna with a well-developed olecranon process, a trowel-like manus, and decreased numbers of pedal phalanges. Although not fossorial, ankylosaurids were likely to dig the substrate, taking advantage of it for self-defense and survival. Moreover, all ten ankylosaur species known in Mongolia are reviewed in this dissertation.I. INTRODUCTION 1 II. MATERIALS AND METHODS 6 III. GEOLOGICAL SETTING 8 III-1. Bayanshiree Formation 8 III-2. Baruungoyot Formation 13 III-3. Nemegt Formation 18 IV. RESULTS 25 IV-1. Systematic paleontology 25 Talarurus plicatospineus Maleev, 1952b 25 Tarchia Maryanska, 1977 44 Tarchia tumanovae sp. nov. 45 Ankylosauridae, gen. et sp. indet. 73 V. PHYLOGENETIC ANALYSES 99 V-1. Phylogenetic placement of Talarurus plicatospineus 99 V-2. Phylogenetic placement of Tarchia tumanovae sp. nov. 103 VI. DISCUSSION 105 VI-1. Paleoecology of Talarurus and Tsagantegia 105 VI-2. Squamosal horn remodeling in ankylosaurines 110 VI-3. Evidence of agonistic behavior in ankylosaurines 111 VI-4. Niche shifting in Mongolian ankylosaurids 114 VI-5. Postcranial evolution of ankylosaurids 117 VI-6. Digging ability of ankylosaurids 121 VII. TAXONOMIC REVIEW OF MONGOLIAN ANKYLOSAURS 125 VII-1. Introduction 125 VII-2. Systematic paleontology 126 Shamosaurus scutatus Tumanova, 1983 126 Minotaurasaurus ramachandrani Miles and Miles, 2009 132 Pinacosaurus grangeri Gilmore, 1933 137 Saichania chulsanensis Maryaska, 1977 148 Talarurus plicatospineus Maleev, 1952b 155 Tarchia kielanae Maryanska, 1977 160 Tarchia teresae Penkalski and Tumanova, 2017 165 Tarchia tumanovae sp. nov. 170 Tsagantegia longicranialis Tumanova, 1993 171 Zaraapelta nomadis Arbour et al., 2014b 175 VIII. CONCLUSIONS 179 REFERENCES 182 APPENDIX 1. Institutional abbreviations 228 APPENDIX 2. Abbreviations used in figures 229 APPENDIX 3. Data matrix related to chapter V-1 231 APPENDIX 4. Character statements related to chapter V-2 238 APPENDIX 5. Data matrix related to chapter V-2 239 ๊ตญ๋ฌธ์ดˆ๋ก 240 ๊ฐ์‚ฌ์˜ ๊ธ€ 243๋ฐ•

    The effect of rare-earth element additions on microstructural properties and irradiation behavior of an Fe-Ni-Cr alloy for LMFBR and fusion reactor applications

    Get PDF
    This study consists of a survey of the effect of yttrium, lanthanum, and cerium rare-earth additions on the microstructure and radiation swelling behavior of an Fe-25.6Ni-8.7Cr-3.3Ti-1.6Al alloy. The undoped alloy was investigated in the as-received, annealed, and arc-melted conditions, and twelve arc melted and rare-earth doped alloys were prepared (doping levels of 0.05, 0.1, 0.5, and 1.0 wt % for each of the three rare earths). The ion bombardments were carried out at 570 and 600(DEGREES)C with 4 MeV Ni or Fe ions to nominal 100 dpa and to 100 and 550 appm He. Lattice parameter, hardness, swelling, and optical and transmission electron microscopy observations were conducted;Ion bombardment at 600(DEGREES)C produced negligible swelling. For ion bombardment at 570(DEGREES)C and helium implantation to 100 appm He, the as-received, annealed, and arc-melted undoped alloy swelled 4.0, 5.1, and 3.8%, respectively. The increase in swelling upon annealing the as-received alloy is believed to be due to the removal of cold work. The subsequent decrease in swelling upon arc melting is interpreted in terms of the reduction in size of the large Ti-rich precipitate and the consequent increase in Ti in solid solution. For ion bombardment at 570(DEGREES)C and helium implantation to 550 appm He, the arc-melted undoped alloy gave 5.2% swelling (as compared to 3.8% for 100 appm He) due to the higher helium loading;The introduction of yttrium or cerium at levels between 0.1 and 1.0% gives rise to a reduction in swelling. This may be due to a decrease in the amount of G-phase precipitate and the size of the large Ti-rich particles. For concentrations above 0.5%, a rare-earth-rich precipitate appeared. At 1% concentrations, the precipitates were observed to swell themselves and to give rise to bulk matrix swelling. The optimum concentrations of Y or Ce for swelling reduction are therefore, considered to be about 0.2-0.4%. Lanthanum additions were not observed to suppress swelling;Unique surface deformations were observed as a result of ion bombardment, especially at and near grain boundaries. At low swelling, the grain boundary region was raised or ridged, probably because of the lateral extrusion-like action of the swelled grains. At higher swelling, the grain bodies were elevated above the grain boundary regions
    • โ€ฆ
    corecore