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Foreword

Antennas in the millimeter wave range require a number of different considerations and
exhibit constraints which we do not face at lower frequencies, for example in the mobile
communication bands. The most severe problems are introduced by the increased
losses and the thereby reduced efficiencies. Another problem is that millimeter wave
antennas, especially if they require higher gain, are more conveniently considered
with ray optical techniques. The usually most stringent problems are the involved cost
because of the special materials and the high absolute precision. This, all together,
leads to the task to avoid in millimeter waves antennas any dielectric materials, to
reduce surface currents as much as possible and to develop a mechanical design that
can be reproduced by casting and if required metallization of dielectric parts.

Dr. Park was able to handle these multiple problems in his PhD thesis extremely
well. He uses a planar parallel-plate Luneburg Lens without any dielectric material.
The wave propagation speed is influenced by quasi photonic bandgap structures, so
called nail beds. These are shaped in a proper way to generate plane waves from
cylindrical or spherical input waves. The design procedures are highly sophisticated
but the final product is mass producable with specific casting procedures. The
electrical parameters, for example beamforming, side lobes, losses and so on surpass
anything presently available at millimeter waves. The antenna is applicable for multiple
beams for example in automotive cruise control radars or for point to multi point
communications.

I wish that the results of this thesis are wide spread in our community and that the
ideas are realized in industrial products. We wish Dr. Park, who has been at our
Institute as guest scientist from Korea, the best for his future carrier.

Prof. Dr.-Ing. Werner Wiesbeck

- Institutsleiter -
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Chapter 1

Introduction

1.1 Adaptive Cruise Control (ACC) Radar

Every year, car accidents will take away not only a great number of lives, but

also damage property very much. For Germany alone, car accidents injured at

least half million people seriously and about eight thousands of them lost their

life last year [Sta01]. Up to the present, much e�ort has been given to reduce

the damage of avoidable car accidents. Also many facilities such as the air bag

have been developed and are available in market.

Recently, as a modern technique to diminish car accidents, an adaptive

cruise control (ACC1) radar is receiving much attention in car industry. This

ACC system is so valuable to be elected as a promising future technology in

this century [Bre00]. The purpose of the radar is to help a car driver to drive

his car safely by informing the car driver of the distance from his car to the

vehicles ahead and its speed [Raf96], [Wen98], [Rob98]. Especially in conditions

of poor visibility such as in dense fog or heavy rain, the ACC radar system is

very helpful [Jon01].

In Fig. 1.1, an ACC radar system is displayed. In the system, three

beams which are controlled electronically by three pin diodes are transmitted

sequentially [Men99], [Wie01]. As is shown, the system is mostly mounted

inside a car's front grille.

For the ACC system, a frequency band of 76-77GHz has been allocated.

Pulse radar or frequency modulation continuous wave (FWCW) radar are com-

1ACC is also called autonomous or automatic cruise control.
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Figure 1.1: An ACC radar system at 76-77GHz in Mercedes Benz S-Class models.

Courtesy by A.D.C. GmbH.

monly used [Sko80], [Mei95], [Wol97].

In an ACC radar system, one of the most important components is the

antenna. The antenna should have at least three beams to detect targets ahead

in front lanes. Further, each beam has a narrow half power beam width to

support a su�cient resolution for the detection of targets ahead in each lane

[All98], [Sch98], [Wie01]. In the vertical plane perpendicular to the lanes (road),

a medium-high resolution should be achieved. Since the size of the antenna

dominates the overall system size, the antenna should be compact in order to

be mounted inside a car's front grille. Also, it should be robust against the

outer impact. Moreover, for public usage as a future system, the cost of the

antenna should be low. In addition, several unexpected and unusual problems

of antennas which happen in millimeter wave frequencies, not in microwave

frequencies should be considered.

Unfortunately, due to the above special and hard speci�cations of the ACC

radar, conventional antennas such as low-cost microstrip antennas and classical

re�ector antennas are inappropriate to be directly applied. In other words, new

antenna concepts dedicated to the special purpose of the 76-77GHz ACC radar

are required.

The motivation of this thesis is to develop a proper antenna for the ACC

radar at 76.5GHz which meets the above requirements.



1.2 Scope and purpose of the thesis

1.2.1 Proposal of parallel-plate Luneburg lens

In this thesis, a new modi�ed and improved parallel-plate Luneburg lens

(PPLL) is proposed to make a new antenna for the 76:5GHz ACC radar.

In many cases, a spherical Luneburg lens has been used for a circular polar-

ization and a high resolution both in azimuth and in elevation [Sch95], [Par00a],

[Atn01]. However, the spherical Luneburg lens has some disadvantages such

as its di�cult fabrication and large size [Ing97], [Kim98], [Mos01]. Until now,

several suggestions have been o�ered for a size reduction and easy fabrication.

For the reduction of lens size, for example, a virtual-source Luneburg lens was

proposed [Rud62], [Han64], [Sch95]. However, the problem of easy fabrication

still is not solved.

In some applications like the ACC radar [Sch98], [Wen98], [Per99] and

short- and medium-range high resolution imaging [Vog82] the system requires

a high resolution only in azimuth together with a linear polarization, a low

cost production, and a compact size. Due to large size and complicated fabric-

ation, the spherical Luneburg lens is unsuitable in spite of several well-matched

characteristics.

Therefore we consider a parallel-plate Luneburg lens (PPLL) shown in

Fig. 1.2. This is also called a TEM �at-plate Luneburg lens [Cul55], [Han64].

Figure 1.2(a) illustrates the top view and the behavior of the rays for the center

feed denoted by feed II in azimuth of the PPLL. As shown in Fig. 1.2(b), in the

PPLL a homogeneous isotropic dielectric is embedded and the thickness of the

dielectric is varied in a radial direction. Using the dielectric in the lens, the lens

converts a cylindrical wave from a primary feed into a plane wave at the aper-

ture. Since the PPLL is completely rotationally symmetric, it has the property

of a wide beam scan angle as shown in Fig. 1.2(a). Also, since the spacing

between two plates is usually less than �0=2, it has a very thin pro�le. Thus,

this lens is considered as a promising device for use in wide angle scanning

applications which require a thin lens [Han64]. Furthermore, its fabrication is

much easier than the spherical Luneburg lens since it uses only a homogeneous

isotropic dielectric for the inhomogeneous pro�le in the lens (see the dielectric

pro�le in Fig. 1.2(b)).

However, the lens in Fig. 1.2 is practically di�cult to realize due to an in-

su�cient durability and a weak contact at the interface between dielectric and

metal in millimeter wave frequencies. Also, the PPLL has a rather poor per-

formance in elevation. In [Joh62], [Han64] and [Vog82], the dual re�ector and
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Figure 1.2: (a) Top view of a PPLL and illustration of the behavior of a wide scan

angle. (b) Cross-sectional view.

the plane �ares were applied to overcome the limitation in elevation. But the

dual re�ector system seems to be too complex and sensitive for the ACC radar

application and the plane �ares gave little improvement. Up to the present,

these critical drawbacks have hindered the application of the PPLL.

Here, with the help of modi�ed one-dimensional (1-D) and two-dimensional

(2-D) corrugated structures, which we call metallic photonic bandgap (PBG)

structures, the above problems will be solved.

1.2.2 PBG structures and parallel-plate Luneburg lens

The terminology of the photonic bandgap (PBG2) is described as a frequency

band in which no photon modes in optics are allowed. In optics, Yablonovitch

2Since key physical ideas and general features of PBG structures within PBGs are common

to those of electromagnetic waves, the term of PBG is commonly used in electromagnetics

as well. However, some authors call the term of PBG electromagnetic bandgap (EBG) at

microwave frequencies [Smi93], [Shu99], [Bar01].



[Yab87] reported for the �rst time that photons in periodic structures have

forbidden bands such as electrons in solids. The periodic structures where

PBGs exist are called photonic crystals or PBG structures. Up to now, a

number of publications have appeared [JOS93], [Joa95], [Sou96], [Pho02]. Also,

as operating frequencies of PBG structures move to microwave and millimeter

wave frequencies, the applications of the PBG structures have been widely

extended [MTT99], [MTT01].

Figure 1.3(a) shows a periodic structure composed of regular and periodic

metal posts with thin metal plates. Figure 1.3(b) shows the surface imped-

ance of the periodic structure. It shows that the structure has high surface

impedance near the resonance frequency f0, so that the periodic structure is

called high-impedance electromagnetic surface [Sie99]. Since no surface waves

can match high surface impedance of the structure, the high-impedance sur-

face prevents surface waves from propagating along the material and hence this

frequency range is called a forbidden band for surface waves. Thus, this high-

impedance surface can be considered as a kind of 2-D photonic crystal (PBG

structure) which stops the propagation of surface waves within the bandgap

[Sie99]. In antenna applications, the property of high surface impedance helps

to suppress surface waves which often in�uence the antenna performance and

cause unwanted mutual coupling [Bro93], [Sie99], [Gon99]. In this thesis, the

property of high impedance is applied to build rotationally corrugated �ares of

the PPLL and then the shortcomings of the PPLL in elevation are overcome.

In addition to the property of high surface impedance near f0, this kind of

PBG structure has the property of having arbitrary surface impedances at lower

and higher frequencies than f0 as displayed in Fig. 1.3(b). This means that

PBG structures o�er electromagnetic properties of dielectrics and act hence as

arti�cial dielectrics.

In antenna design, the property of supporting arbitrary surface impedance

is often used to guide surface waves [Wal65], [Ell81]. Therefore, using PBG

materials, very compact and low pro�le surface-wave or traveling-wave antennas

can be designed. In this thesis, the property of the metallic PBG structure

is applied to make an asymmetric parallel-plate waveguide Luneburg lens by

replacing a homogeneous isotropic dielectric. Therefore, the problems of the

dielectric in the PPLL are solved.

The purposes of the thesis are as follows:

� to present and analyze metallic PBG structures having arbitrary surface

impedance, especially in a parallel-plate waveguide.
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Figure 1.3: (a) High-impedance electromagnetic surface presented by Sievenpiper, et

al. [Sie99]. (b) Illustration of the property of high impedance in the

forbidden band and supporting arbitrary surface impedance at lower and

higher than f0. Z is surface impedance of the structure.

� to show a practical application of metallic PBG structures to a modi�ed

and improved parallel-plate Luneburg lens, called an asymmetric parallel-

plate waveguide Luneburg lens (APWLL) antenna composed of an

APWLL and rotationally symmetric corrugated �ares.

� to propose a single o�set cylindrical parabolic re�ector antenna composed

of the APWLL, a pair of symmetric corrugated �ares, and a single o�set

cylindrical parabolic re�ector for a 76.5GHz ACC radar.

1.3 Outline of the thesis

This thesis is divided into three parts in terms of its main ideas. The �rst part

deals with the theoretical background of the analysis of PBG materials. Ch. 2

belongs to this part. The second part is about the analysis of two metallic PBG

structures and their application to the APWLL antenna, Ch. 3 and Ch. 4 are

devoted to this part. The third part introduces the numerical and experimental

veri�cation and optimization for the ACC radar at 76.5GHz.

In Ch. 2, �rst, the analogy of the transmission line theory for plane waves

is introduced and then it is shown that many useful results of transmission line

theory can directly be used to obtain the surface impedance and the re�ec-

tion coe�cients for the plane wave problems. Second, the transverse resonance



condition is introduced and the important expressions of the condition about

wave impedance and re�ection coe�cient are derived. Third, the transverse

resonance method (TRM) is applied to �nd the propagation constants in mul-

tilayer dielectrics. At the same time, some useful equations are derived for the

analysis of the PBG structures used in Ch. 3.

In Ch. 3, metallic PBG structures of a corrugated surface, periodic and regu-

lar metal post structures, and modi�ed bed-of-nail structures are investigated.

The quantitative and qualitative analyses of the above PBG structures in a

parallel-plate waveguide are performed. It will be shown that the PBG struc-

tures have not only high surface impedances in forbidden bands, but they also

have theoretically any surface impedance in the passband for guiding surface

waves. The TRM derives the transverse propagation constants for the surface

waves.

In Ch. 4, the above PBG structures are applied to make an APWLL

antenna. It will be shown that a periodic and regular metal post structure

can substitute the homogeneous isotropic dielectric in the PPLL. A corrugated

surface is used for a rotationally symmetric �are to enhance the performance

of the APWLL in elevation. For the design of the APWLL and the corrugated

�ares, their far �elds are derived with the aid of geometrical optics (GO) and

the aperture �eld integration method. Also, design procedures of the corrug-

ated �ares and the APWLL are described in detail.

In Ch. 5, a prototype APWLL antenna for the 76-77GHz ACC radar is

presented. As far as the corrugated �ares are concerned, a pair of the rota-

tionally symmetric corrugated �ares is designed for the APWLL. In order to

determine the proper dimensions of the APWLL and the �ares for a desired

pattern, their far �elds are computed at 76:5GHz. With the help of HFSS3,

APWLLs composed of di�erent lattices and metal posts are investigated and

then proper post dimensions, post shapes, and lattices are determined. By

measurement, the theory and the design procedure are veri�ed. At the end,

the limitation of the corrugated �ares will be shortly discussed for a desired

narrower half power beam width (HPBW).

In Ch. 6, the APWLL antenna with the corrugated �ares is improved by

combining an o�set cylindrical parabolic re�ector and a pair of symmetric

corrugated �ares. Using GO, the far �eld of the re�ector is obtained. Then,

the optimization of the re�ector and the the corrugated extension is conducted

for the ACC radar application. Design procedures of the complete antenna

are described and veri�ed by measurement. It will be seen that the usage of

3HFSS version 2.0.55, Ansoft corporation, Pittsburgh, 1999.



the re�ector makes the complete antenna clearly compact, simultaneously a

medium-high resolution is achieved.

In Ch. 7, the thesis is summarized. Some comments on further works are

made, especially about mass production and new applications of the new an-

tenna.



Chapter 2

Transmission line theory and

transverse resonance method

(TRM)

In this chapter, two useful analysis methods are described. The �rst is about

transmission line theory for a plane wave using the analogy between a trans-

mission line and a plane wave. The second is the transverse resonance method

for computing the transverse propagation constant in a composite structure.

The time factor of ej!t is suppressed throughout the thesis.

2.1 Transmission line theory for a plane wave

2.1.1 Wave propagation on a transmission line

A transmission line is a distributed-parameter network, where voltages and

currents can vary in magnitude and phase over its geometrical dimension. It

is analyzed from the point of view of �eld analysis and the point of view of

lumped circuit concept [Har61], [Chr95], [Ra96].

In Fig. 2.1, a two-wire lossless transmission line terminated by a load im-

pedance ZL at z = 0 and its lumped equivalent circuit model are displayed. Z0

is the characteristic impedance of the transmission line and � is the propaga-

tion constant of a wave supported by the line. Assuming that a) no mutual

impedance exists between incremental sections of the line and b) the shunt

9
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Figure 2.1: (a) A physical two-wire lossless transmission line terminated in a load

impedance Z
L
. (b) Lumped equivalent circuit model.

current dI �ows in planes transverse to the z-directed wave propagation, the

one-dimensional Helmholtz equations of a voltage wave V (z) and a current

wave I(z) for a uniform transmission line are obtained as follows:

d2V (z)

dz2
� Z Y V (z) = 0 (2.1a)

dI2(z)

dz2
� Z Y I(z) = 0 (2.1b)

where

Z = j!L a series impedance per unit length

L a series inductance per unit length

Y = j!C a shunt admittance per unit length

C a shunt capacitance per unit length.

The equation is analogous to the Helmholtz equation for a plane wave. The

general wave solution of Eq. (2.1) is

V (z) = V +
0 e

�j�z + V �

0 e
j�z (2.2)

where � = !
p
LC is the eigenvalue of the di�erential operator. From the

relation
dV (z)

dz
�Z I(z) = 0 obtained by the lumped circuit model in Fig. 2.1(b),

the current wave in the transmission line is

I(z) = I+0 e
�j�z + I�0 e

j�z =
V +
0

Z0

e�j�z �
V �

0

Z0

ej�z (2.3a)



where Z0 is a characteristic impedance de�ned as

Z0 =
V +
0

I+0
= �

V �

0

I�0

=

r
L

C
: (2.3b)

As shown in Eq. (2.2) and Eq. (2.3a), the whole waves are composed of

a forward propagating wave, V +
0 e

�j�z that travels in the +z direction and a

backward propagating wave, V �

0 e
+j�z that travels in the �z direction due to

the mismatch of two impedances ZL 6= Z0.

From ZL = V (z)=I(z)jz=0, the voltage re�ection coe�cient �(0) at z = 0

is derived as

�(0) =
V �

0

V +
0

=
ZL � Z0

ZL + Z0

: (2.4)

Eq. (2.2) and Eq. (2.3a) are rewritten in terms of �(0) using Eq. (2.4). The

result is

V (z) = V +
0 (e

�j�z + �(0)ej�z) (2.5a)

I(z) =
V +
0

Z0

(e�j�z � �(0)ej�z): (2.5b)

These equations show that if knowing the re�ection coe�cient at z = 0, the

voltage and the current on the transmission line at any distance z = �l(l � 0)

are obtained. Thus, the input impedance looking toward the load ZL can be

derived at a distance z = �l. The result is

Z in =
V (�l)
I(�l)

= Z0

1 + �(0)e�2j�l

1� �(0)e�2j�l
: (2.6)

Using Eq. (2.4), Eq. (2.6) leads to a very important result referred to as the

transmission line impedance equation. That is,

Zin = Z0

ZL + jZ0 tan�l

Z0 + jZL tan�l
: (2.7)

Eq. (2.7) is a very useful result giving the input impedance of a transmission line

of length l with the characteristic impedance Z0 and the load ZL. It is very

often used for impedance matching design using a transmission line [Poz93],

[Chr95].

In the following section, it is shown that the equations derived in this section

can be true to the plane wave.



2.1.2 Transmission line analogy for plane waves

medium 1
(ε1)
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(TE wave)

Hxt (TM)

y
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Ext (TE)
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(TM wave)
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θr θt

→
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→

Figure 2.2: Re�ected wave (E
xr

for TE wave and H
xr

for TM wave) and transmitted

wave (E
xt

and H
xt
) on the interface of two di�erent media for the oblique

incident uniform plane wave (E
xi

and H
xi
).

In Fig. 2.2, a uniform plane wave is obliquely incident on a plane interface

between two media. Since the oblique incident wave is uniform, the transmitted

and re�ected wave are also uniform [Har61], [Ish91], [Gen98]. The Helmholtz

equations for the electric �eld E and the magnetic �eld H in source free and

homogeneous mediums are given as

r2E + k2iE = 0 (2.8a)

r2H + k2iH = 0 (2.8b)

where r2 = @2

@x2
+ @2

@y2
+ @2

@z2
and k2i = !2�i"i for i = 1;2.

First, we consider the case of the electric �eld parallel to the interface, called

TE wave (transverse electric wave), that is, @2

@x2
Exi = 0. By a separation of

variables, the general solution of Eq. (2.8) in medium 1 is

Ex1(y;z) = Exi +Exr

= E+
x1e

�jky1y�jkz1z +E�

x1e
�jky1y+jkz1z (2.9a)

where

k1 = !
p
�1"1

ky1 = k1 sin �i

kz1 = k1 cos �i =
q
k21 � k2y1: (2.9b)



Using Maxwell's curl equation, ~H = �1
j!�
r� ~E, the magnetic �eld ~H is derived

as

Hy1(y;z) = H+
y1e

�jky1y�jkz1z +H�

y1e
�jky1y+jkz1z

=
cos �i

�1
(E+

x1e
�jky1y�jkz1z �E�

x1e
�jky1y+jkz1z) (2.10a)

Hz1(y;z) = �
sin �i

�1
(E+

x1e
�jky1y�jkz1z +E�

x1e
�jky1y+jkz1z) (2.10b)

where �1 =
p
�1="1 is the intrinsic wave impedance of the medium 1. As is

shown in Eqs. (2.9) and (2.10), both of the electric �eld E and the magnetic

�eld H in the medium 1 are composed of an incident wave with the term E+
x1

and a re�ected wave with the term E�

x1, respectively such as the solutions of

the voltage and current waves in Eq. (2.5).

In the same way, the solution in medium 2 is

Ex2(y;z) = Ext = E+
2 e

�jky2y�jkz2z (2.11a)

Hy2(y;z) =
cos �t

�2
E+
2 e

�jky2y�jkz2z (2.11b)

Hz2(y;z) = �
sin �t

�2
E+
2 e

�jky1y�jkz2z (2.11c)

where

k2 = !
p
�2"2

ky2 = k2 sin �t

kz2 = k2 cos �t =
q
k22 � k2y2

�2 =
p
�2="2: (2.11d)

We consider the wave impedance in the direction determined by the cross-

product rule applied to a tangential electric �eld and a tangential magnetic

�eld. The wave impedance is de�ned as the ratio of the tangential electric �eld

to the tangential magnetic �eld. Thus, the wave impedance of the TE wave in

the +z direction in the medium 1 is

ZTE1 =
E+
x1

H+
y1

=
�1

cos �i
: (2.12a)



Similarly, the wave impedance in the medium 2 is expressed as

ZTE2 =
E+
x2

H+
y2

=
�2

cos �t
: (2.12b)

In Fig. 2.3, the equivalent circuit of the plane wave problem in Fig. 2.2 is

displayed.

ZTE1,  kz1

Ex(y, z) , Hx(y, z)

z
0z=-l

ZTM1,  kz1

ZTE2
ZTM2

Figure 2.3: Equivalent circuit of the uniform plane wave problem in Fig. 2.2. For the

TE wave case, the total electric �eld is E
x
(y;z) in the medium 1 and the

wave impedances are Z
TE1

and Z
TE2

in each medium. For the TM wave

case, H
x
(y;z) and Z

TM1
and Z

TM2
.

It is true that due to the continuity of the tangential electric �eld Ex1 = Ex2
and the tangential magnetic �eld Hy1 = Hy2, the wave impedances normal to

an interface at z = 0 should be continuous. From Eq. (2.9) and Eq. (2.10a),

Ex1(y;0)

Hy1(y;0)
= ZTE1

E+
x1 +E�

x1

E+
x1 �E

�

x1

(2.13a)

Ex2(y;0)

Hy2(y;0)
= ZTE2: (2.13b)

Therefore, the continuity of the two impedances results in

ZTE2 = ZTE1

E+
x1 +E�

x1

E+
x1 �E

�

x1

: (2.13c)

Now, the re�ection coe�cient at z = 0 is de�ned as the ratio of the re�ected

electric �eld E�

x1 to the incident electric �eld E
+
x1 at the interface z = 0. From



Eq. (2.13c), the re�ection coe�cient �(0) looking into the medium 2 at z = 0

is derived as

�(0) =
E�

1

E+
1

=
ZTE2 � ZTE1

ZTE2 + ZTE1

: (2.14)

Note that the above result for �(0) is the same as the one of the transmission

line problem given by Eq. (2.4) previously if letting ZTE1 = Z0 and ZTE2 = ZL.

By combining �(0) with Eq. (2.9) and Eq. (2.10a), the solutions of Ex1(y;z)

and Hy1(y;z) in Eqs. (2.9) and (2.10a) are rewritten as

Ex1(y;z) = E+
1 (e

�jky1y�jkz1z + �(0)e�jky1y+jkz1z) (2.15a)

Hy1(y;z) =
E+
1

ZTE1

(e�jky1y�jkz1z � �(0)e�jky1y+jkz1z): (2.15b)

Similar to the transmission line problem, Eq. (2.15) is used to de�ne a

generalized input wave impedance Z in of a plane wave traveling in the +z

direction. At z = �l, this is given by:

Zin(z = �l) =
Ex1(y;� l)
Hy1(y;� l)

= ZTE1

1 + �(�l)
1� �(�l)

(2.16)

where �(�l) = �(0)e�j2kz1l is the re�ection coe�cient at z = �l. In Eq. (2.14),
�(0) is given in terms of the two wave impedances ZTE1 and ZTE2 in each

medium. Thus,

Zin(z = �l) = ZTE1

ZTE2 + jZTE1 tan(kz1l)

ZTE1 + jZTE2 tan(kz1l)
: (2.17)

For the case of the magnetic �eld parallel to the interface, called TM wave

(transverse magnetic), the equations are obtained in the same way as the case

of TE wave. Therefore, the derivation of these equations is left out and only

the �nal results are shown. For the TM case, the input wave impedance at any

distance z = �l is

Zin(z = �l) = ZTM1

ZTM2 + jZTM1 tan(kz1l)

ZTM1 + jZTM2 tan(kz1l)
(2.18a)

with

ZTM1 = �1 cos �i

ZTM2 = �1 cos �t: (2.18b)



It is necessary to note that with �i = 0Æ, ZTE1 is minimum while ZTM1 is

maximum and is identical with the intrinsic wave impedance of the medium 1.

In the following section, two equations for the input wave impedance,

Eq. (2.17) and Eq. (2.18) are often used while applying the transverse res-

onance method.

2.2 Transverse resonance method (TRM)

The transverse resonance method (TRM) is often used to determine the modes

propagating in composite waveguide structures [Mar51], [Col91]. Also, in

[Wal65], the method is applied to design traveling-wave antennas. In the follow-

ing sections, the principle of the method and several applications are presented.

Furthermore, several important and useful equations for the analysis of PBG

structures that are presented in Ch. 3 are derived from the TRM.

2.2.1 Transverse resonance condition

First, in order to explain the transmission resonance phenomenon, consider a

parallel-plate waveguide depicted in Fig. 2.4. The waveguide is �lled with a

lossless and homogeneous medium (�; "). It is assumed that the wall of the

waveguide is a perfect electric conductor (PEC).

ZTE1

a

0

y

z

PEC

PEC
(a)

y´
y=y´

(b)

, ZTM1

Figure 2.4: (a) A parallel-plate waveguide and (b) its transmission line equivalent

circuit. Z
TM1

and Z
TE1

denote wave impedances for the TM wave and

the TE wave, respectively.



( )

In order to obtain the electric �eld for the TE wave (transverse electric wave

to the z-directed wave propagation), the Helmholtz equations in Eq. (2.8a) is

referred to. By applying the radiation boundary condition in the +z direction,

the electric �eld is given as the superposition of mode functions:

Ex(y;z) =
X

m=1;2;:::

e�jkzmz(E+
me

�jkymy +E�

me
+jkymy) (2.19a)

with

kzm =
q
k21 � k2ym and k1 = !

p
�": (2.19b)

The terms of E+
me

�jkymy and E�

me
�jkymy are waves which travel in the +y and

the �y direction, respectively. Now, by applying the boundary conditions of

Ex(y = 0;z) = Ex(y = a;z) = 0, Eq. (2.19a) is

Ex(y;z) =
X

m=1;2;:::

E+
m(e

�jkymy � e+jkymy)e�jkzmz

= �
X

m=1;2;:::

2jE+
m sin(kymy)e

�jkzmz (2.20)

where kym = (m�)=a is the transverse propagation constant or the eigenvalue of

the m-th mode function in the y direction. Note that standing waves sin(kymy)

exist in transverse direction, the y direction and the medium is lossless. Thus,

by self-reproduction, electromagnetic �elds have the same amplitude and phase

at y = y0 [Ra96]. In other words, the forward wave which returns to y = y0

through the path y = y0 ) y = a ) y = 0 ) y = y0 is identical with the

original forward wave at y = y0. It is said that a resonance in the transverse

direction occurs, especially, this phenomenon is called the transverse resonance.

In Fig. 2.5, the path of the forward wave and its equivalent model are

displayed. The equivalent values of the paths are

1) = e�jkmy(a�y) = traveling from y = y0 to y = a

2) =
�!
� m(a) = re�ection coe�cient looking into the +y direction at y = a

3) = e�jkmya = traveling from y = a to y = 0

4) =
 �
� m(0) = re�ection coe�cient looking into the �y direction at y = 0

5) = e�jkmyy
0

= traveling from y = 0 to y = y0:

Using Eq. (2.14),
�!
� m(a) = �1 and

 �
� m(0) = �1 are simply obtained due to
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Figure 2.5: The path of the forward wave and its equivalent model.

ZTE2 = 0. Now the forward wave traveling through the path is then

Em(y
0) = E+

me
�jkymy

0

� e�jkym(a�y0) � �!� m(a) � e�jkym(a) �  �� m(0) � e�jkymy
0

= E+
me

�jkymy
0

� e�j2kyma: (2.21)

The transverse resonance condition requires that the wave in Eq. (2.21) is

identical with the original forward wave, E+
me

�jkymy
0

. That is,

E+
me

�jkymy
0

= E+
me

�jkymy
0

� e�j2kyma: (2.22)

As a result, the transverse propagation constant is derived as

e�j2kyma = 1 or kym =
m�

a
; m = 1;2; : : : : (2.23)

Now using the result of Eq. (2.23), the transverse resonance condition is

derived in terms of the re�ection coe�cients at y = y0.

From Eq. (2.16),
�!
� m(y

0), the re�ection coe�cient looking into the +y

direction at y = y0 is expressed by

�!
� m(y

0) =
 �
� m(0)e

�j2kymy
0

: (2.24a)

Also
 �
� m(y

0), the re�ection coe�cient looking into the �y direction at y = y0

is obtained as

 �
� m(y

0) =
�!
� m(a)e

�j2kym(a�y0): (2.24b)



( )

By combining Eq. (2.23) with Eq. (2.24b), the representation of the transverse

resonance condition in terms of the re�ection coe�cients at y = y0 results in:

�!
� m(y

0) �  �� m(y
0) = e�j2kyma = 1: (2.25)

In order to derive the expression of the transverse resonance condition in

terms of the impedances at y = y0, consider the wave impedances looking into

the +y and �y direction at y = y0,
�!
Z m(y

0) and
 �
Z m(y

0). Using Eq. (2.16),

the impedances are

�!
Z m(y

0) = ZTEm

1 +
�!
� m(y

0)

1��!� m(y0)
(2.26a)

 �
Z m(y

0) = ZTEm

1 +
 �
� m(y

0)

1� �� m(y0)
(2.26b)

where ZTEm
is the wave impedance of the m-th mode in the medium. With

Eq. (2.25), the impedance
 �
Z m(y

0) is hence expressed in terms of
�!
� m(y

0):

 �
Z m(y

0) = ZTEm

1 + 1
�!
� m(y0)

1� 1
�!
� m(y0)

= ZTEm

�!
� m(y

0) + 1
�!
� m(y0)� 1

= ��!Z m(y
0): (2.27)

As a result, the transverse resonance condition requires that in terms of the

wave impedance, the summation of two wave impedances looking into the +y

and �y direction at y = y0 should be zero. That is,

�!
Z m(y = y0) +

 �
Z m(y = y0) = 0: (2.28)

The two impedances of
�!
Z m(y = y0) and

 �
Z m(y = y0) are given by Eq. (2.17)

for TE wave as follows:

�!
Z m(y = y0) = j� tan(kymy

0) (2.29a)
 �
Z m(y = y0) = j� tan(kym(a� y0)) (2.29b)

with

� =

r
�

"
: (2.29c)



Eq. (2.28) results in

tan(kymy
0) = � tan(kym(a� y0)) (2.30a)

so that

�kym(a� y0) = m� + kymy; m = 1;2; : : : : (2.30b)

Thus, the solution for the transverse propagation constant is

kym =
m�

a
: (2.31)

and the dispersion relation of kzm =
q
k21 � k2ym is completed. The result of

Eq. (2.31) is equivalent to that of Eq. (2.23). It is shown above that by calcu-

lating the wave impedances and solving Eq. (2.28), the transverse propagation

constant in the medium is found and the dispersion relation is determined.

Here the representations of the TRM in terms of the impedance and the

re�ection coe�cients are derived only for TE waves. Note that since for TM

waves, the same results, Eqs. (2.25) and (2.28) are derived, the derivation is left

out. In the next section, the application of the transverse resonance condition

for multilayer media is introduced.

2.2.2 Applications of the TRM for multilayer dielectrics

A partially dielectric-slab-loaded parallel-plate waveguide is illustrated in

Fig. 2.6(a). Three dielectric layers ("1 = "0"r1; "2 = "0"r2; "3 = "0"r3) are

homogeneous and isotropic in the direction of propagation, i.e. the z direction.

2.2.2.1 TM-case

First, the TM wave is considered. In the case of "r2 < "r1, "r3, waves will

propagate in the media 1 and 3. That is, the parallel-plate waveguide guides

surface waves. Their energy will be con�ned and transmitted in the media 1

and 3. It should be noted that the phase velocity of the surface waves can be

changed by modifying the dielectric thickness and dielectric constants.

In order to determine the relation between the phase velocity in the me-

dia and the thickness of the dielectrics, the transverse propagation constants

in each region are required. Fig. 2.6(b) shows the transverse resonance equi-

valent circuit for the structure. ZTM1, ZTM2, and ZTM3 represent the wave
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Figure 2.6: For TM wave case, (a) a parallel-plate waveguide �lled with three dielec-

tric layers. (b) Its transverse resonance equivalent model.

impedances in the transverse direction, i.e. the x direction in each medium.

Thus,

ZTMi =
kxi

!"i
; i = 1; 2; 3 (2.32a)

where

kxi =

q
k2i � k

2
zi and ki = !

p
�i"i: (2.32b)

Using Eq. (2.18) and Eq. (2.32), the input wave impedance looking into the

+x direction at x = t2 + t3 is

�!
Z (x = t2 + t3) = j

kx1

!"1
tan(kx1t1): (2.33)

In a similar way, the input wave impedance looking into the �x direction at

x = t3 is

 �
Z (x = t3) = j

kx3

!"3
tan(kx3t3): (2.34)

With Eqs. (2.18), (2.32), and (2.33), the input wave impedance looking into



the +x direction at x = t3 is obtained as

�!
Z (x = t3) = jZTM2

�!
Z (x = t2 + t3) + jZTM2 tan(kx2t2)

ZTM2 + j
�!
Z (t2 + t3) tan(kx2t2)

= j
kx2

"r2
�
kx1
"r1

tan(kx1t1) +
kx2
"r2

tan(kx2t2)

kx2
"r2
� kx1

"r1
tan(kx2t2) tan(kx1t1)

: (2.35)

If the transverse resonance condition at x = t3 is applied,

�!
Z (x = t3) +

 �
Z (x = t3) =

kx3

"r3
tan(kx3t3) +

kx2

"r2
�
kx1
"r1

tan(kx1t1) + j kx3
!"3

tan(kx2t2)

kx2
"r2
� kx1

"r1
tan(kx2t2) tan(kx1t1)

= 0: (2.36)

This equation for the transverse propagation constant is solved numerically or

graphically.

As an example of calculating the transverse propagation constants, consider

the symmetric case of the structure in Fig. 2.6(a), that is, t1 = t3 and "1 = "3
[Abe00]. With these conditions, Eq. (2.36) is rewritten as

A2 �
2kx2

"r2 tan(kx2t2)
A+

kx2

"2r2
tan(kx2t2) = 0 (2.37a)

where

A =
kx3

"r3
tan(kx3t3): (2.37b)

Snell's law requires that the propagation constant kz3 in the medium 3 should

be equal to kz2 in the medium 2 at x = t3. That is, the refraction index n at

x = t+3 in the medium 3 is equal to that at x = t�3 in the medium 2:

n =

r
"r3 �

�kx3
k0

�2
=

r
"r2 �

�kx2
k0

�2
(2.38)

where k0 = !
p
�0"0. By substituting Eq. (2.38) for kx2 and kx3 in Eq. (2.37),

Eq. (2.37) contains only one variable, the refraction index n. Therefore, the

second order equation determines the variable A from Eq. (2.37a) and then A

has to be equal to that in Eq. (2.37b). Therefore, Eq. (2.37b) for the refrac-

tion index n is solved, that is, the transverse propagation constant kx2 or the

transverse propagation constant kx3.
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Especially, for the above case, i.e. "1 = "3 and t1 = t3, the calculation can

be further simpli�ed. Due to "1 = "3 and t1 = t3, the entire structure becomes

symmetric with respect to the plane x = t2
2
+ t3. Since the tangential magnetic

�eld or current at the plane of symmetry x = t2
2
+ t3 must be continuous, the

plane of symmetry can be replaced by a PEC. In Fig. 2.7(b), its equivalent

model is displayed. Note that the symmetry plane is equivalent to a short just

like a PEC for TM surface waves. To get the transverse propagation constants,

x

z
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x=t3

(b)
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equivalent PEC plane

t2/2Hy

medium 3
ε3, µ3

medium 2

t3

Figure 2.7: For TM wave case, (a) a half structure equivalent to the composite wave-

guide in Fig. 2.6 in case "1 = "3 and t1 = t3. (b) Its transverse resonance

equivalent model.

the transverse resonance condition at x = t3 is applied.
 �
Z (x = t3) in Eq. (2.34)

is

�!
Z (x = t3) = j

kx2

!"2
tan(kx2

t2

2
): (2.39)

Therefore, using Eq. (2.38),

�!
Z (x = t3) +

 �
Z (x = t3) =

p
"r3 � n2

"r3
tanh(k0

p
"r3 � n2 t3) +

p
"r2 � n2

"r2
tan(k0

p
"r2 � n2 t2) = 0:

(2.40)

As shown in Eq. (2.40), the result becomes much simpler than that in Eq. (2.37).

Eq. (2.40) is solved for the refraction index n, numerically or graphically.



2.2.2.2 TE-case
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Figure 2.8: For TE wave case, (a) a parallel-plate waveguide �lled with three dielectric

layers. (b) Its transverse resonance equivalent model.

Now we consider the case of the TE wave in Fig. 2.8. From the de�nition

of the wave impedances for TE waves in Eq. (2.12), the wave impedances are

expressed by

ZTEi =
!�i

kxi
; i = 1; 2; 3: (2.41)

By assuming �i = �0, Eq. (2.36) for the TE wave is

kx2 tan(kx3t2) +
kx2kx3 tan(kx1t1) + jkx1kx2 tan(kx2t2)

kx1 � kx2 tan(kx2t2) tan(kx1t1)
= 0: (2.42)

For the case of t1 = t3 and "1 = "3 in Fig. 2.9(a), the tangential magnetic

�eld from the point of view of �eld theory and voltage from the point of view

of circuit theory must be continuous at the symmetry plane x = t2
2
+ t3 for

the TE wave. Therefore, the symmetry plane can be replaced with a perfect

magnetic conductor (PMC) while for the TM wave it is replaced with a PEC.

In Fig. 2.9(b), the equivalent model is depicted. Here the symmetry plane is

represented as an open. Thus,

�!
Z (x = t3) = �j

!�

kx2
cot(kx2

t2

2
): (2.43)

Using Eq. (2.34),

 �
Z (x = t3) = j

!�

kx3
tan(kx3t3): (2.44)
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Figure 2.9: For TE wave case, (a) a half structure equivalent to the composite wave-

guide in Fig. 2.6 in case "1 = "3 and t1 = t3. (b) Its transverse resonance

equivalent model.

As a result,

kx2 tan(kx3t3)� kx3 cot(kx2
t2

2
) = 0: (2.45)

In the similar way, the transverse propagation constants, kx2 and kx3 are solved

graphically or numerically.



Chapter 3

PBG Structures for Arbitrary

Surface Impedance

This chapter presents two PBG structures that support arbitrary surface im-

pedance for guiding and suppressing surface waves. The �rst structure is a

conventional corrugated surface. The second is a periodic and regular metal

post structure. The similarities and di�erences between both are illustrated by

applying the transmission line theory and the TRM in the previous chapter.

3.1 Corrugated surface

The properties of the corrugated surfaces are well described in [Ell81], [Kil90],

[Col91], [Eom01]. Many applications have been proposed. In this section,

behaviors of the corrugated surface in a parallel-plate waveguide are presented

by using the transmission line theory and the TRM, especially related to the

surface impedance of the corrugated surface and surface waves.

3.1.1 Corrugated surface in a parallel-plate waveguide

Figure 3.1 shows a conventional corrugated surface within an air-�lled

parallel-plate waveguide and its cross-sectional view. It will be assumed that

the thickness between the corrugations, called the tooth width thickness D is

in�nitely thin, so that the in�uence of the thickness can be neglected as de-

scribed in [Bri48], [Wal65]. The length of the corrugation in the y direction

26



is in�nite whereas the height t is constant. As shown in the cross-sectional

view, the entire structure is divided into two regions. Z1 and Z2 are the wave

impedances of region I and II, respectively.

metal plate

D
t

Hy

→
→
kz

→
kx

(a)

metal plate

x=t

region I

region II

t

y

Z2, k0

Z1, kx1
h

x

metal plate

PD

Hy

z

Zcor

(b)

Figure 3.1: (a) Corrugated surface in a parallel-plate waveguide. (b) Cross-sectional

view [left] and its equivalent transverse resonance model [right]. The

dotted lines indicate the propagating paths of the surface wave.

For an incident magnetic �eld parallel to the y axis Hy1 (TM wave), the

Helmholtz equation for the magnetic �eld in region I (t < x < h) is expressed

by

� @2

@x2
+

@2

@z2
+ k20

�
Hy1(x; z) = 0: (3.1)



With Hy1(x;1) = 0, the magnetic �eld Hy1(x;z) results in

Hy1(x;z) = (H+
y1e

�jkx1(x�h) +H�

y1e
jkx1(x�h))e�jkz1z (3.2a)

with

k2x1 = k20 � k
2
z1

k0 = !
p
�0"0: (3.2b)

From the relation of ~E(x;z) = 1
j!"0
r� ~H(x;z), the electric �eld is

Ex1(x;z) =
kz1

!"0
Hy1 (3.2c)

Ez1(x;z) =
kx1

!"0
(�H+

y1e
�jkx1(x�h) +H�

y1e
jkx1(x�h)))e�jkz1z

= (E+
z1e

�jkx1(x�h) +E�

z1e
jkx1(x�h))e�jkz1z (3.2d)

with

E+
z1 = �

kx1

!"0
H+
y1

E�

z1 =
kx1

!"0
H�

y1: (3.2e)

Using the boundary condition Ez1(x = h; z) = 0,

H+
y1 = H�

y1 and E+
z1 = �E

�

z1: (3.2f)

In order to derive the �eld in a corrugation (0 < z < P and 0 < x < t),

the boundary conditions, Ez2(x = 0; z) = 0, Ex2(x; z = 0) = 0 and Ex2(x; z =

P ) = 0 should be used [Col91]. Thus, the magnetic and electric �elds in the

corrugation are

Hy2(x; z) =

1X
i=0

cos
� i�z
P

�
(ejkx2x + e�jkx2x) (3.3a)

Ex2(x; z) =
1

!"0

1X
i=0

� i�
P

�
sin
� i�z
P

�
(ejkx2x + e�jkx2x) (3.3b)

Ez2(x; z) =
1

!"0

1X
i=0

kx2 cos
� i�z
P

�
(ejkx2x � e�jkx2x) (3.3c)



where

kx2 =

r
k20 �

� i�
P

�2
and 0 < z < P: (3.3d)

Moreover, it will be assumed that the period P is much smaller than a

wavelength in free space �0 (P � �0). Therefore, without i 6= 0 in Eq. (3.3)

the propagation constant kx2 is always imaginary, that is, no propagatingmodes

exist. From Eq. (3.3d), i = 0 leads to kx2 = k0, thus, only the lowest mode

in the parallel-plate waveguide, the TEM mode exists in the x direction in the

corrugations. The incident wave propagating in the �x direction is ejkx2x, and

the re�ected wave is e�jkx2x. The dotted lines in Fig. 3.1(b) are the propagating

paths of surface wave.

The equivalent transverse resonance model of the corrugated surface is il-

lustrated in Fig. 3.1. According to the de�nition of the wave impedance in

Ch. 2, the wave impedance ZTM2 is obtained as

ZTM2 = Z2 =

r
�0

"0
= �0 (3.4)

while the transverse wave impedance in region I is speci�ed as

Z1 = �
E+
z1(x; z)

H+
y1(x; z)

=
kx1

!"0
: (3.5)

Now using transmission line theory, the surface impedance looking into the

corrugation at x = t, Zcor =
 �
Z (x = t) is obtained as

Zcor =
 �
Z (x = t) = jZ2 tan(k0t)

= j�0 tan(k0t): (3.6)

In Fig. 3.2, the surface impedance is plotted as a function of the corrugation

height. As shown, depending on the corrugation height t, the corrugated surface

provide arbitrary surface impedance. It is also seen that the surface impedance

Zcor is divided into three kinds of the surface impedance depending on the

height t.

First, for the height of about t = (2m+ 1)�0=4 (m = 0; 1; 2; : : : ) (range I),

the surface impedance becomes theoretically in�nite. However, the impedance

of the wave in the range I in Fig. 3.1(b) cannot be in�nite. Therefore, due to

impedance mismatch at the boundary x = t, no surface waves are allowed on

the surface. It should be noted that although there are no surface waves, it
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Figure 3.2: Surface impedance as a function of the corrugation height normalized by

the free-space wave length �0.

is possible that propagating modes exist. For instance, consider a corrugated

horn [Men74]. In a traveling-wave antenna using the corrugated surface, the

energy is radiated in free space [Ell81] instead of �owing along the corrugated

surface. In other words, the bandgaps are true to the surface waves, not the

wave propagating in the direction perpendicular to the corrugations [Thu02].

In case (2m+1)�0=4 < t < (2m+2)�0=4 (range II), the surface impedance

becomes capacitive. This range of the height is very often utilized for suppress-

ing TM surface waves which requires inductive surface impedance. From this

fact above, the range (or frequency range) is generally called as a forbidden

band for the TM surface waves. It is important to note that the corrugation

height t plays the most important role in suppressing TM surface waves or

in capacitive surface impedance. This fact is applied to the design of circular

corrugated �ares in Ch. 4.

Finally, for (2m)�0=4 < t < (2m + 1)�0=4 (range III), the surface imped-

ance becomes inductive, so that TM surface waves can propagate along the

corrugated surface. Thus, since the surface wave propagates along the corrug-

ated surface, there is no power �ux in the x direction and hence the transverse

propagation constant kx1 is imaginary.

Now provided that the corrugated surface guides TM surface waves, the

transverse propagation constant kx1 in Eq. (3.2) becomes imaginary. Thus, the

�eld in the region I given by Eq. (3.2) can be written as follows.

Hy1 = cosh
�
jkx1j(x � h)

�
e�jkz1z (3.7a)

Ex1 =
kz1

!"0
Hy1 (3.7b)

Ez1 =
jkx1j sinh

�
jkx1j(x� h)

�
j!"0

e�jkz1z (3.7c)



where

k2z1 = k20 + jkx1j
2 = k20(1 + �21) (3.7d)

kx1 = jjkx1j (3.7e)

�1 =
jkx1j
k0

: (3.7f)

It should be pointed out that due to kz1 > k0(= 2�=�0) and therfore �z1(=

2�=kz1) < �0 in Eq. (3.7d), the phase velocity of the surface wave is slower

than the speed of light, whereas in general the phase velocity in the waveguide

is faster [Bri48]. This phenomenon of slow wave can be explained using the

principle of charge and discharge of electric energy storage at the interface in

circuit theory. The quantitative analysis of the phase velocity is given later.

Guiding a TE surface wave in the range II in Fig. 3.2 is di�erent from that

of a TM surface wave in the range III [Col91], [U�01]. The lowest mode for

the TE case is a TE1 mode. Thus to support the TE1 mode, the spacing

between the parallel-plate waveguide P must be larger than �0=2. However,

with P � �0=2, the edge of the thin plate between two corrugations acts as

a di�raction grating. Thus, the corrugated surface will not support the TE

surface wave without the case that a high-dielectric-constant material would

be �lled in the corrugation [Col91].

In practice, the tooth width D cannot be in�nite, so that the in�uence of

the �nite thickness D on the surface impedance should be taken into account.

From the point of view of circuit theory, the volume �lled by a tooth does

not store any electric energy in the corrugation. Thus, the surface impedance

should be reduced by the ratio of the tooth width D to the period P . Therefore,

the surface impedance in Eq. (3.5) is rewritten as

Zcor =
 �
Z (x = t) = jW�0 tan(k0t) (3.8)

where the weighting factor W =
�
P�D
P

�
is the ratio of the length un�lled by

the corrugation to the period. It is necessary to note that the thinner the tooth

width D is, the better Eq. (3.8) predicts the impedance.

Also, practically the length of the corrugation can not be in�nite. Therefore,

depending on the incident angle of the TM surface wave, the weighting factor

W in Eq. (3.8) varies and then the magnitude of the surface impedance changes,

especially in the ranges II and III. In other words, the corrugated surface acts as

an anisotropic dielectric in the range I where the surface impedance is inductive.

However, although the magnitude of the impedance varies according to W ,

the kind of reactance is determined only by the depth of the corrugation as

mentioned previously.



3.1.2 Propagation constant and phase velocity of TM sur-

face waves

In order to determine the propagation constant and phase velocity of surface

waves, the propagation constant kz1 in Eq. (3.7d) should be calculated. First,

kx1 is found using the TRM. Second, kz1 is determined by the dispersion re-

lation in Eq. (3.7d). The surface impedance looking into the �x direction at

x = t (see Fig. 3.1(b)),
 �
Z (x = t) is given in Eq. (3.8) and the input impedance

looking into the +x direction,
�!
Z (x = t) is

�!
Z (x = t) = jZ1 tan(kx1(h� t)) (3.9)

where Z1 is the wave impedance of the TM surface wave. From Eqs. (3.5) and

(3.7e),

Z1 =
kx1

!"0
=
jjkx1j
!"0

=
jk0�1

!"0
= j�0

p
n2 � 1 (3.10a)

where n is the refraction index of the corrugated surface given by

n =
kz1

k0
: (3.10b)

Also, the transverse propagation constant kx1 in Eq. (3.9) is expressed by

kx1 = jk0
p
n2 � 1: (3.11)

Thus, tan(kx1(h� t)) in Eq. (3.9) results in

tan(kx1(h� t)) = j tanh(k0
p
n2 � 1(h� t)): (3.12)

The deviation of the hyperbolic tangent function from the tangent function is

described in appendix A. Thus, the impedance
�!
Z (x = t) is

�!
Z (x = t) = �j�0

p
n2 � 1 tanh(k0

p
n2 � 1(h� t)): (3.13)

With Eq. (3.8) and Eq. (3.13), the TRM results in

�!
Z (x = t) +

 �
Z (x = t) = 0p

n2 � 1 tanh(k0
p
n2 � 1(h� t))�W tan(k0t) = 0: (3.14a)

Also, using Eq. (3.10), Eq. (3.14a) is rewritten as

�1 tanh(k0�1(h� t))�W tan(k0t) = 0: (3.14b)



By solving the above equations graphically or numerically, the desired trans-

verse propagation constant of the TM surface wave is obtained.

Using Eq. (3.14b), the in�uence of the weighting factor W on the phase

velocity of the TM surface wave is investigated. The phase velocity of the

surface wave is obtained from Eq. (3.7d) as

vp

c
=

1p
1 + �21

(3.15)

where c is the speed of light in free space. �1 is calculated from Eq. (3.7f) after

Eq. (3.14b) is solved.

In Fig. 3.3, the phase velocity vp of the corrugated surface is plotted. For

the calculation, the height t and the spacing (h � t) are normalized by the

wavelength �0. It is clearly seen that vp is always lower than the speed of

light c. Also, as W is getting smaller, the phase velocity vp becomes higher for

the same height. The reason is that with smaller W , the surface impedance

becomes lower as shown in Eq. (3.8). Since there is no solution of �1 in 0:25�0 <

t < 0:5�0, namely the stopband for TM surface waves, no wave numbers or

phase velocities corresponding to �1 exist.
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Figure 3.3: Illustration of the in�uence of the tooth width D on the phase velocity

with (h� t) = �0=2 �xed (W = 1:0 for D = 0).

3.2 Regular and periodic metal posts

In the above case of the corrugated surface, the surface impedance is dependent

on the direction of the incident waves. In other words, the corrugated surface

acts as an anisotropic arti�cial dielectric [Wal65], [Lee71], [Col91]. For the



purpose of suppressing the surface waves or building high surface impedance,

the isotropy is unnecessary. However, in order to guide surface waves to an

arbitrary direction at lower frequencies than f0, that is, in the range II and

III in Fig. 3.2, a structure should have an isotropy [Wal65]. In the following

section, a PBG structure supporting TM surface waves and simultaneously

nearly isotropic property is proposed.

3.2.1 Theoretical analysis

Figure 3.4 shows periodic and regular square metal posts in a parallel-plate

waveguide. The unit cell of the structure, called a lattice, is a square. The metal

post structure can be considered as a bed-of-nail structure placed in a parallel-

plate waveguide. In [Wal65], [Kin81], and [Kin83], the bed-of-nail structure

was investigated experimentally and theoretically. The surface impedance of

the bed-of-nail structure becomes inductive or capacitive depending on the

height of the posts. Thus the structure is used to guide surface waves [Wal60],

[Wal65]. Here, characteristics of the bed-of-nail structure built in a parallel-

plate waveguide are reported. Also new lattices and new shapes of the metal

posts for the isotropy are presented.

In �g. 3.4, the parallel-plate waveguide is �lled with an isotropic homogen-

eous dielectric (" = "0"r). The period P is much smaller than �0, at the same

time the width of the posts D is smaller than half a period in order that the

complete structure behaves as a continuous medium of an arti�cial dielectric.

However, it should be noted that if the period P satis�es the Bragg condition

in the kz direction, that is, P is about a half of a wavelength, the structure has

maximum re�ection in the kz direction and then has Bragg resonance frequen-

cies [Yar84], [Bul93], [Lee94], [Pes01], [Thu02].

The basic principle is that with the electric �eld (~Einc) perpendicular to

the posts, the charges on the posts will be displaced for setting up an induced

�eld (~E ind) that will remove the applied �eld at the obstacle surface. This

principle is illustrated in Fig. 3.4(b). Figure 3.4(b) also shows that depending

on the geometric parameters of the posts such as height and width, di�erent

displacement current is induced.

In Fig. 3.5, the cross-sectional view and its transverse resonance equivalent

circuit are displayed. The structure is divided into two regions. The �rst

region is between the upper metal plate and the surface of the PBG structure

(t < x < h). kx1 is the transverse propagation constant and Z1 is the intrinsic

wave impedance in this region. The second region is the metal post region

(0 < x < t). kx2 is the transverse propagation constant and Z2 is the intrinsic
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Figure 3.4: Geometry of the PBG structure. (a) Periodic and regular metal posts

in a parallel-plate waveguide. (b) Illustration of the �eld induced on the

metal posts by the incident �eld.

wave impedance in the region. From Eq. (2.32a), the intrinsic wave impedances

in each region are

Z1 =
kx1

!"
(3.16a)

Z2 =
kx2

!"
: (3.16b)

In order to calculate the surface impedance of the structure, it will be

assumed that due to P � �0 and D � P=2 only the TEM mode exists in the

metal post region, similar to a corrugated surface. Thus, kx2 is the propagation

constant k2 in the region and the intrinsic wave impedance Z2 = k2=(!"): Now

the surface impedance ZISO on the metal posts is

ZISO = jWZ2 tan(k2t) (3.17)

where W =
�
1 � D2

P �D

�
is a weighting factor de�ned as the ratio of the area

un�lled by the post to the area P � D as shown in Fig. 3.6. Additionally, in

calculating the surface impedance ZISO, fringing at the tops of the metal posts

is considered since these fringing �elds lead to the e�ect of adding capacitive

to the surface impedance. This means that k2 � !
p
�0" and hence the wave

impedance Z2 � �0=
p
"r.

Similar to a corrugated surface, in the range of (2m + 1)�0=4 < t <

(2m + 2)�0=4 (m = 0; 1; 2; : : : ), the surface impedance ZISO becomes induct-

ive, so that the structure is capable of guiding TM surface waves along the thin
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Figure 3.5: (a) Cross-sectional view of the structure of Fig. 3.4. (b) The transverse

resonance equivalent circuit.
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Figure 3.6: Illustration of the way of calculating the factor W in Eq. (3.17).

metal surface. In the range of near the height t = (2m + 1)�0=4, the PBG

structure has a high impedance, so that there are no surface waves. Finally, in

the range (2m + 1)�0=4 < t < (2m + 2)�0=4, the surface impedance becomes

capacitive.

As mentioned previously, however, the entire structure functions as a con-

tinuous dielectric under the assumption P � �0 and D � P=2. Moreover,

due to the regularity and periodicity of the metal posts, the PBG structure



will have an isotropy as described in [Wal60] and [Wal65]. The isotropy dis-

tinguishes the bed-of-nail structure from corrugated surfaces. Therefor, the

PBG structure of regular and periodic metal posts guides a TM surface wave

regardless of the incident wave direction.

3.2.1.1 Lattices and post shapes for isotropy

The isotropy of the metal posts is subject to the shape of the metal posts and

the lattice of the structure as well since the complete structure is composed of

metal posts with a lattice. In order to choose isotropic post shapes, the length

obtained by projecting the posts from all directions should be considered. For

the isotropy, the projection length is nearly identical for all directions. In

D D D

(a) (b) (c)

Figure 3.7: Post shapes recommended for an isotropy. (a) Top view of a square post,

(b) a hexagonal post, and (c) a circular post.

Fig. 3.7, three di�erent post shapes for the isotropy, a square post, a hexagonal

post, and a circular post are displayed. As shown, the circular post has the

identical length of D in all directions, so that the PBG structure composed of

circular posts is more isotropic than any others.

In case of hexagonal posts and circular posts, the weighting factor W for

square posts is invalid since since the area occupied by a post is modi�ed.

Thus, according to the de�nition of the weighting factor W in Eq. (3.17), for

hexagonal and circular posts, the weighting factor W in Eq. (3.17) should be

changed.

W = 1�
�D

4P
; for circular posts (3.18a)

W = 1�
p
3D

2P
; for hexagonal posts: (3.18b)



However, if D is getting smaller than P and �0, both of the square and

the hexagon become similar to the circle (see Fig. 3.7) and then the weighting

factor W is getting closer to 1. That is, with a small D, the surface impedance

depends only on the volume, not the shape of each post if the edge di�raction

of the square and the hexagonal posts can be neglected.

In fact, the lattice of the PBG structure plays a more important role

D
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P P0

P

P0

(a)

D

P

P
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D

P

P P

(c)

Figure 3.8: Top view of possible lattices for the isotropy of the PBG structure. (a)

Hexagonal lattice (P0 > P ), (b) square lattice, and (c) triangular lattice.

in the isotropic property than the shape of the posts since without a proper

lattice, the PBG structure is anisotropic for any post shapes and dimensions.

For the isotropy, the PBG structure should be regular and periodic, so that the

performance of the PBG structure is nearly independent of the direction of an

incident wave.

In the same way of choosing the isotropic post shape, isotropic lattices



which have the nearly identical projection length in all directions are chosen.

In Fig. 3.8, a hexagonal lattice, a square lattice, and a triangular lattice are

considered as proper isotropic lattices. Any combinations between the post

shapes in Fig. 3.7 and the lattices in Fig. 3.8 are possible such as the triangular

lattice with the square posts.

The performances of the above lattices and post shapes are veri�ed in Ch. 5

by applying the PBG structure for the design of an asymmetric parallel-plate

waveguide Luneburg lens antenna.

3.2.1.2 Determination of propagation constants

To obtain the transverse propagation constants in the parallel-plate waveguide

using the TRM, �rst, the surface impedance looking into the �x direction at

x = t,
 �
Z (x = t) is given by ZISO in Eq. (3.17). By the transmission line

theory, the impedance looking into the +x direction,
�!
Z (x = t) is

�!
Z (x = t) = jZ1 tan(kx1(h� t))

= j
kx1

!"
tan(kx1(h� t)) (3.19a)

with

kx1 =

q
k20"r � k2z1: (3.19b)

Considering the PBG structure as a dielectric with a dielectric constant

of "d and the TEM wave propagating in the +z direction, the propagation

constant kz1 is k0
p
"d at x = t. Thus, kx1 results in

kx1 = k0
p
"r � "d = k0

p
"r � n2 (3.20)

where n is the refraction index given by the ratio of kz1 to kx1. For the goal

of guiding surface waves, the transverse propagation constant kx1 should be

purely imaginary since no real power �ux in the x direction exist but the whole

power is transferred along the surface of the PBG structure. For the purpose

of the pure imaginary kx1, "r < n2 is required in Eq. (3.20). Now combining

kx1 = jk0
p
n2 � "d with Eq. (3.19a) results in

�!
Z x=t +

 �
Z x=t = 0

p
n2 � "r tanh

�
k0
p
n2 � "r(h� t)

�
�W tan(k2t) = 0: (3.21a)



Using Eq. (3.20), the above result is

jkx1j tanh(jkx1j(h� t))�
�0p
"r
W tan(k2t) = 0: (3.21b)

The equation is numerically solved for the transverse propagation constants

jkx1j. Specially, for the case that the spacing h goes to in�nity, that is, without

the upper plate,

kz1 = k0
p
1 + (W tan(k0t))2 (3.22)

as given in [Wal60] and [Wal65].

In Fig. 3.9, jkx1jt is calculated as a function of k2t. Figure 3.9(a) shows

the in�uence of the weighting factor W with (h � t) = 100t �xed. The

curve repeats periodically and there is no jkx1jt for
(2m+1)�

2
< k2t <

(2m+2)�

2

(m = 0; 1; 2; : : : ). As is shown, the increase of W results in the increase of

jkx1jt. The reason is that a larger W provides the higher surface impedance

ZISO in Eq. (3.17).

In Fig. 3.9(b), jkx1jt is displayed as a function of k2t for di�erent spacings

(h � t) between the surface of the PBG structure and the upper metal plate.

The mini�gure shows that with a smaller spacing, jkx1jt is higher.

3.2.2 Modi�ed metal post structures

3.2.2.1 Symmetric periodic and regular metal posts structure

First, consider the metal post PBG structure in Fig. 3.10. It is expected that it

has also an isotropy and then guides surface waves. For the sake of simplicity,

t1 = t3 and "r1 = "r3 are chosen. Thus the entire structure can be simpli�ed by

replacing the plane at x = h=2 as a PEC or a short in the same as in Fig. 2.7.

In Fig. 3.10(b), the equivalent circuit of the simpli�ed structure is displayed.

The equivalent circuit is analogous to that in Fig. 3.5. Therefore, by referring

to the result in Eq. (3.21), the relation between the post dimension and the

propagation constants is simply obtained as

p
n2 � "r2 tanh

�
k0
p
n2 � "r2

(h� t)
2

�
=

"r2p
"r1

W tan(k1t) (3.23)

where W = 1 � D
P

for the metal square posts in Eq. (3.18a). This symmetric

PBG structure may be applicable in a surface wave antenna design for the

symmetric property [Her00].
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Figure 3.9: Computation of jkx1jt as a function of k2t in Eq. (3.21b) for (a) three

di�erent weighting factors W and (b) three di�erent spacing (h� t).
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Figure 3.10: (a) Cross-sectional view of the symmetric metal post structure. (b)

Transverse equivalent model.

3.2.2.2 Sievenpiper's high-impedance electromagnetic surface

In Fig. 3.11, the high impedance structure described by Sievenpiper, et al.

[Sie99] is placed in the parallel-plate waveguide. It is composed of periodic

regular circular metal posts on a metal ground plane and thin plates on the

metal posts. The structure can be considered as a transformed bed-of-nail with

the capacitive thin metal plate.

Hy

→

→
kz

→
kx

Figure 3.11: High-impedance electromagnetic surface presented in [Sie99].

The cross-sectional view and the equivalent model are displayed in Fig. 3.12.

Note that the capacitive reactance is parallel to the impedance of the metal post



structure [Kue64], [Col91]. Thus, the surface impedance of the PBG structure

is

ZPBG =
�!
Z x=t = 1=

� 1

ZISO

+ j!Ci
�

=
jW�2 tan(k2t)

1�
�
W�2 tan(k2t) � Ci

� (3.24)

where the impedance ZISO is given in Eq. (3.17), �2 = �0=
p
", and W = 1 �

�D=(4P ) in Eq. (3.18). Eq. (3.24) states that the structure supports arbitrary

surface impedances. Furthermore, the surface impedance can also be changed

by varying the dimension of the thin plate with the post dimensions �xed.
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Figure 3.12: (a) Cross-sectional view of the structure. (b) The transverse resonance

equivalent circuit.

Now from
�!
Z x=t in Eq. (3.19a) and Eq. (3.24), the TRM leads to the

propagation constants in the high-impedance structure as

�!
Z (x = t) +

 �
Z (x = t) = 0

jkx1j
!"

tanh(jkx1j(h� t))�
W �2 tan(k2t)

1�
�
W �2 tan(kxt) � Ci

� = 0: (3.25)

In a similar way as previously, jkx1j can be determined graphically or numer-

ically. Note that with Ci = 0, the structure becomes the metal post structure,

and then Eq. (3.25) is the same as Eq. (3.21).



Chapter 4

Application of PBG

structures to an asymmetric

parallel-plate waveguide

Luneburg lens

In this chapter, the two PBG structures of the periodic and regular metal post

structure and the corrugated surface are applied to an improved and modi�ed

parallel-plate Luneburg lens (PPLL) antenna, called an asymmetric parallel-

plate waveguide Luneburg lens (APWLL) antenna. The complete APWLL

antenna consists of an APWLL, a pair of rotationally symmetric corrugated

�ares, a primary feed. Far �elds of the antenna are derived and design rules

are presented.

4.1 Principle of parallel-plate Luneburg lens

A parallel-plate Luneburg lens should be satis�ed with the following refraction

index n(r0):

n(r0) =
p
2� (r0)2; 0 � r0 � 1

n(r0) = 1; r0 � 1 (4.1)

44



where r0 is the radius normalized by the radius of the lens r0 [Lun64]. It is

noted that the refraction index pro�le is inhomogeneous for 0 � r0 � 1, and

the index of refraction is unity at r0 = 1, so that a Luneburg lens is matched

to free space. Since the phase velocity is proportional to 1
n(r0)

, the pro�le of

the refraction index in Eq. (4.1) implies that the phase velocity at the rim of

the lens is higher than that in the middle.

(a)

homogeneous
isotropic dielectric

air

metal plate elevation

r´= 1r´= 0

(b)

homogeneous
isotropic dielectric

air

metal plate elevation

r´= 1r´= 0

(c)

Figure 4.1: Parallel-plate Luneburg lens. (a) Top view and the behavior of the

propagating rays. Cross-sectional view (b) in case that the spacing of

metal plates is constant [Han64] and (c) in case that the spacing is varied

[Vog82]. The radius r0 is normalized by the real lens radius r0.

In Fig. 4.1(a), the behavior of the propagating rays is illustrated. Each ray

propagates from a point located on the rim of the lens, called a focal point

toward the �ctive aperture in the opposite side. The rays which start from the

focal point arrive at the �ctive aperture at the same time since rays through

the middle of the lens propagate slower than the rays at near the rim due to

the above refraction index. Therefore, the parallel-plate Luneburg lens has the

same phase at the �ctive aperture. In other words, a plane wave leaves from



the lens.

In order to provide the refraction index in a PPLL, mostly a homogeneous

isotropic dielectric is used [Han64], [Joh93]. In Figs. 4.1(b) and 4.1(c), the cross-

sectional views embedded by a homogeneous isotropic dielectric are displayed.

Air is �lled in the rest of the dielectric in the parallel-plate waveguide. The

thickness of the homogeneous isotropic dielectric in the lens is varied in a radial

direction in order to satisfy n(r0).

4.2 Application of the regular and periodic

metal posts

As mentioned in Ch. 1, the usage of a dielectric in the PPLL causes bad dur-

ability and weak contact on the interface between the dielectric and the metal

plate. Therefore, the metallic PBG structure of the regular and periodic metal

post structure is used instead of a homogeneous isotropic dielectric to get over

the drawbacks of dielectric.

As described in Ch. 3, the PBG structure of the regular and periodic metal

posts acts like a homogeneous arti�cial dielectric. Furthermore, since the PBG

structure is made of metal and realized on the same plate as the metal plate

of the parallel-plate waveguide, the metallic PBG structure provides the prop-

erties of strong durability, good contact and little dielectric loss.

4.2.1 Determination of metal post dimension

In order to utilize the metal post structure in the APWLL, the structure has

to satisfy the required refraction index in Eq. (4.1). In Eq. (3.21), the relation

of the post dimension and the refraction index has been derived. By inserting

Eq. (4.1) into Eq. (3.21) and letting "r = 1 (see Fig. 3.5), Eq. (3.21) is expressed

by p
1� (r0)2 tanh

�
k0
p
1� (r0)2(h� t)

�
=W tan(k0t): (4.2)

The weighting factorW is determined by Eq. (3.18). Eq. (4.2) states that if W

and h are given, the pro�le of the post height t for the index n(r0) is determined.

Also with h and t given, the required weighting factor W is obtained for n(r0).

Here, the case of obtaining the metal post height t for n(r0) is considered.

In order to �x the post height t, two cases are shown. The �rst is the spacing

`h =constant', the second is the spacing `(h� t) =constant'.
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Figure 4.2: An APWLL with a square lattice and square posts in case of h = constant.

(a) Top view. (b) Cross-sectional view.

4.2.1.1 h = constant

In Fig. 4.2, the top view and the cross-sectional view of the lens are displayed.

The APWLL has a square lattice and square posts. From Eq. (4.2), the post

height t is numerically obtained, with the weighting factor W �xed.
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Figure 4.3: Variation of the post height for four di�erent spacings of the plates h.

P = 0:2�0 and D = 0:07�0 (W = 0:65 by Eq. (3.8)).

Figure 4.3 shows the normalized post height t=�0 as a function of r0 for

di�erent plate spacing h. It is seen that the posts in the middle are tallest

whereas the ones at the rim are lower. With a smaller h, the maximum height

becomes lower and the pro�le of the height is sensitively changed despite a little
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the spacing of the plates h = 0:48�0 �xed. P = 0:2�0. Note that the

width of the posts D is varied (D1 > D2 > D3).

variation of h. In other words, with a lower h, a little deviation of h during

fabrication will seriously in�ict the lens performance because a little deviation

of h causes a large error of the post pro�le.

However, for �0
2
< h < 1, the entire pro�le is little changed. The reason

is the behavior of the hyperbolic tangent function in Eq. (4.2). That is, if

(h � t) in Eq. (4.2) grows, the hyperbolic tangent function is converging to 1

(see appendix A). From the point of view of �elds in the x direction, it means

that the amplitude of the attenuated wave in the +x direction ejxj is much

larger than that of the re�ected wave e�jxj since the wave in the +x direction

is completely bound to the PBG structure. Hence the impedance
�!
Z (x = t) in

Eq. (3.19a) is

�!
Z (x = t) =

jk0
p
n2 � 1

!"0
: (4.3)

Note that the hyperbolic tangent function has disappeared in Eq. (4.3). As a

result, the post height t is independent of the variation of the spacing h, that

is,

t(r0) =
�0

2�
tan�1

�p1� (r0)2

W

�
: (4.4)

From the above reason, h > �0=2 is preferred in order to enhance the tol-

erance of the measurement and fabrication since the small deviation of the
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Figure 4.5: The surface impedance Z
TM

corresponding to the post heights for

W = 0:77 in Fig. 4.4 (marked cross sign). The dotted line is the surface

impedance as a function of the post height from Eq. (3.17).

spacing h in measurement and fabrication leads to little variation of the post

pro�le and hence has little e�ect on the performance of the APWLL. Espe-

cially, in applications such as the ACC radar operating in the millimeter wave

frequency range, the entire dimension (i.e. post height t and spacing h) is

very small. Therefore, a small deviation of the spacing h in measurement and

fabrication is acceptable by taking h > �0=2.

However, if �0=2 < h, higher-order modes near the rim of the lens may

be excited. Therefore, in order to determine the appropriate spacing h in

the design of an APWLL, both of the tolerance of h in fabrication and the

suppression of higher-order modes in the lens must be considered.

In Fig. 4.4, the variation of the post height pro�le for di�erent W (or dif-

ferent D) is displayed. It shows that with a largerW , the height in the middle

becomes lower. The reason is that with a large W , metal posts will have more

incident �eld between the posts and then more induced �eld on the posts.

Therefore shorter posts are necessary in order to obtain the same surface im-

pedance as that with a small W . For W = 0:77, the maximum height is about

0.14�0.

As shown in Figs. 4.3 and 4.4, the pro�le of the posts' height is such that

the post height decreases in the radial direction. Since the surface impedance

is proportional to the height of the posts, the surface impedance decreases as

well. Therefore, the rays in the center propagate slower than that o� the center

like the function of a homogeneous isotropic dielectric in the lens.

Using Eq. (3.17), the surface impedance ZTM for n(r0) is calculated. In

Fig. 4.5, the surface impedance ZTM corresponding to the post height for



W = 0:77 in Fig. 4.4 is displayed with the marked cross signs (�). Note that
the marked range changes relatively smoothly. Hence it is possible in practice

to get an almost exact arbitrary inductive surface impedance as a little vari-

ation of the height t e�ects little the surface impedance ZTM. In contrast, with

a smaller W , that is D > P=2, the posts are getting taller. Thus, the range

of ZTM for the posts is located in the region where ZTM cannot be exactly

achieved due to its sensitivity of the t variation.

4.2.1.2 (h� t) = constant

In Fig. 4.6, an APWLL with constant (h � t) is displayed. The top view is

identical to one of h = constant, whereas the cross section is di�erent. Using

Eq. (4.2) and letting (h � t)=constant, the analytical solution for the post

height t is derived:

t(r0) =
�0

2�
tan�1

�p1� (r0)2

W
tanh

�2�
�0

p
1� (r0)2(h� t)

��
: (4.5)

In Fig. 4.7, the post pro�les for four di�erent cases of (h � t) calculated by

Eq. (4.5) are plotted. It shows that the variation of (h � t) has only a little

in�uence on the pro�les. The reason is that if (h�t) is larger than about 0.3�0,
the hyperbolic tangent function approaches 1 (see Appendix A). But for both

cases h = constant and (h� t) = constant, the tallest posts are located in the

middle.

h t

(a)

Hy

(b)

Figure 4.6: An APWLL with a square lattice and square posts in case of

(h� t) = constant. (a) Top view. (b) Cross-sectional view.
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The in�uence of the weighting factor W (or post dimensions D) is shown

in Fig. 4.8. The entire pro�les are proportional to the decrease of W like the

case h = constant shown in Fig. 4.4.

4.2.2 Far-�eld calculation of the APWLL

Figure 4.9 illustrates the procedure for calculating the far �eld of the lens. The

total far-�eld calculation is divided into two steps. First, the aperture �eld

of the APWLL Ea(y) is determined by GO using the far �eld of the primary

horn Ep(�) [Vog82], [McN90]. Second, the far �eld of the APWLL is calculated

with the help of the aperture �eld integration method using the aperture �eld

[Pee53a], [Bal97].

4.2.2.1 Aperture �eld

The Finite Element Method (FEM) can be used for calculating the aperture

�eld of a PPLL, too [Gre99]. As the lens is usually several wavelengths long,

the e�ciency of an FEM calculation is low. On the other hand, geometrical

optics (GO) is quite fast. Thus, GO is selected although the aperture �elds are

approximately predicted due to the assumption that the focal point of the lens

should be placed in the middle of the aperture of a practical feed.

In Fig. 4.9, the geometry of the lens is displayed for calculating the aperture

�eld. In the lens, ray tubes are illustrated. The angle � is used to describe

the lens with the radius r0 and the rays. d� is the di�erential increment of

the angle �. The di�erential increments of x and y are denoted dx and dy,
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respectively.

From principles of GO [Kli65], [Lee78], [McN90] it can be shown that the

energy �ow is along rays. The energy �ow through a ray tube at the feed is

Sp(x;�)dxd�, where Sp(x;�) is the energy distribution per unit angle area (dxd�)

in the primary pattern of the feed. In the same way, the energy �ow through

the ray tube at the aperture is expressed by Sa(x;y)dxdy, where Sa(x;y) is the

energy distribution per unit area (dxdy) at the aperture.

Since Sa and Sp are the magnitude of the Poynting vector at the feed and

at the aperture, it is proportional to the square of the magnitude of the electric

�eld Ea at the aperture and Ep at the feed, respectively. Additionally, it will be

assumed that Sa is a separable function of x and y and Sp a separable function

of x and �. Thus,

Sa(x;y)dxdy = jEa(x)j
2jEa(y)j

2dxdy

Sp(x;�)dxd� = jEp(x)j
2jEp(�)j

2dxd�: (4.6)

Since the energy �ow should be conserved through various cross sections normal

to a ray tube, Sa(x;y)dxdy = Sp(x;�)dxd�. That is,

jEa(x)j
2jEa(y)j

2dxdy = jEp(x)j
2jEp(�)j

2dxd�: (4.7)

From Fig. 4.9, the relation between y and � is obtained:

y = r0 sin(�): (4.8a)



Figure 4.9: Geometry of a parallel-plate Luneburg lens for the calculation of the aper-

ture �eld with the aid of GO and calculation procedure of far �elds.

Then,

dy = r0 cos(�)d�: (4.8b)

Substituting dy into Eq. (4.7) results in

jEa(y)j =
1p

r0 cos(�)
� jEp(�)j (4.9)

where Ep(�) is the far �eld of the primary feed. It is noted that the amplitude

of the aperture �eld in the y direction, jEa(y)j, is subject to the angle � and

the amplitude of the far �eld of a primary feed, jEp(�)j.
In order to obtain the phase di�erence between the �ctive aperture and the

real aperture, the distance pa(y) has to be calculated. By assuming that a

plane wave at the �ctive aperture is left, the distance is

pa(y) = r0(1� cos(�)): (4.10)

As a result, by combining Eqs. (4.9) and (4.10), the aperture �elds at the real



aperture are

~Ea(x;y) = Ea(x;y)x̂

= Ea(x)Ea(y)x̂ = Ea(x)jEa(y)je
jk0pa(y)x̂ (4.11a)

~Ha(x;y) =
1

�0
Ea(x;y)ŷ

=
1

�0
Ea(x)jEa(y)je

jk0pa(y)ŷ: (4.11b)

As an example, a H-plane sectoral horn for a primary feed is considered.

The width and height of the H-plane sectoral horn are �0 and �0=4. Using the

formula for the far �eld of the horn in [Bal97], the �eld Ep(�) is calculated.

In Fig. 4.10(a), the far �eld of the horn and the aperture �eld distribution

calculated by Eq. (4.9) are plotted. In practice, the energy in Fig. 4.10(b) may

not disappear abruptly at j�j = 90Æ. This is due to the approximation of GO.
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Figure 4.10: (a) Far �eld of the H-plane sectoral horn. (b) Field distribution at the

lens aperture.

4.2.2.2 Far-�eld calculation

With the aperture �eld in Eq. (4.11), the far �elds of the lens are derived

with the aid of the aperture �eld integration method [Yam96], [Bal97]. The

procedure of the derivation is described in appendix B in detail. Here, only the



results are written:

E� =
jr0k0e

�jk0R

4�R

Z x0

2

�
x0

2

Z �

2

�
�

2

Ea(x;y) cos(�) cos( )(1 + cos(�)) �

ejk0 êr�~�dxd� (4.12a)

E =
�jr0k0e�jk0R

4�R

Z x0

2

�
x0

2

Z �

2

�
�

2

Ea(x;y) �

(cos(�) sin( )(1 + cos(�)) � sin(�) sin(�))ejk0 êr �~�dxd� (4.12b)

and

H� = �
E 

�
(4.12c)

H =
E�
�

(4.12d)

where

êr � ~� = x sin(�) � cos � r0 sin(�) � sin(�) � sin( ) + r0 cos(�) � cos(�):
(4.12e)

Now with Eq. (4.12a) and Eq. (4.12b), H-plane ( = 90Æ) and E-plane

( = 0Æ) patterns are derived respectively as follows:

H-plane pattern with  = 90Æ:

E� = 0 (4.13a)

E =
�jr0k0e�jk0R

4�R

Z x0

2

�
x0

2

Z �

2

�
�

2

Ea(x;y)(cos(�)(1 + cos(�)) � sin(�) sin(�)) �

ejk0(�r0 sin(�)�sin(�)+r0 cos(�)�cos(�))dxd�: (4.13b)

E-plane pattern with  = 0Æ:

E� =
jr0k0e

�jk0R

4�R

Z x0

2

�
x0

2

Z �

2

�
�

2

Ea(x;y) cos(�)(1 + cos(�)) �

ejk0(x sin(�)+r0 cos(�)�cos(�))dxd� (4.14a)

E = 0: (4.14b)

Note that E = 0 because E in Eq. (4.12b) is an odd function with respect

to  = 0Æ. The far-�eld patterns are obtained numerically.



4.3 Application of corrugated surfaces

As discussed in Sec. 3.1, corrugated surfaces have an ability in suppressing

surface waves. In this section, the property of a corrugated surface is applied to

build a pair of rotationally symmetric corrugated �ares added to the APWLL.

With the �ares, the performance of the APWLL in elevation is improved in

terms of side lobe levels and a HPBW.

Up to now, there has not been any analytical or approximate approach

to design the rotationally symmetric corrugated �ares for the Luneburg lens

available. Therefore, the new approach of using the corrugated �ares and the

design procedure presented in this section are absolutely novel and useful.

4.3.1 Property and design of a pair of rotationally sym-

metric corrugated �ares

In [Pee53a], the improvement of a microwave Luneburg lens in elevation was

attempted using a pair of rotationally symmetric plane �ares as shown in

Fig. 4.11. However, as the polarization of the lens in [Pee53a] is perpendic-

ular to the rotational axis of the lens, namely horizontal, the �ares cannot be

adapted to the APWLL which has a vertical polarization.

Recently, Vogel presented an asymmetric sandwich lens, a kind of a PPLL

added by a pair of rotationally plane �ares [Vog82], [Vog83] for a mechanical

scanning. The lens has a vertical polarization like the APWLL. However, as

described in [Vog82], the extended plane �ares badly in�uence the performance

of the lens in azimuth.

In order to verify the performance of the APWLL fed by a pair of rota-

tionally symmetric plane �ares in elevation, a pair of plane �ares is fabricated

and measured. A end-�re waveguide is used for a primary feed. Therefore,

the antenna has a constant �eld distribution in elevation. In Fig. 4.11(a), the

APWLL with a pair of rotationally symmetric plane �ares is displayed. The

measured pattern of the APWLL is plotted in Fig. 4.11(b). As expected, the

antenna has a higher side lobe levels due to a constant �eld distribution in

elevation.

Here a pair of rotationally symmetric corrugated �ares is proposed to

modify the constant �eld distribution. In Fig. 4.12, the corrugated �ares are

illustrated. They seem to be a biconical antenna. The circularly-shaped cor-

rugations are periodically engraved on the metal �ares. Due to their rotational

symmetry, the complete antenna preserves the properties of the APWLL in

azimuth, especially, a large scan angle and multiple beam.
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Figure 4.11: (a) Illustration of an APWLL antenna added to plane �ares. (b) Far-�eld

pattern in elevation.

For using the corrugated �ares, an additional important property of the

corrugated surface mentioned in Ch. 3 is used. It is that the type of the sur-

face impedance still becomes capacitive for the depth of the corrugations of

between�0=4 and �0=2 whereas the corrugated surface works in an anisotropic

way. In fact, as shown in Fig. 4.12, the corrugated surface is not perpendic-

ular to the direction of wave propagation. This fact leads to the variation of

the weighting factor W in Eq. (3.8). However, due to the above reason, the

corrugated �ares stop the surface wave on the �ares' surface.

As shown in Fig. 4.12(b), a corrugated �are is determined by the �are length

�e and the �are angle �e. A cuto� ring is placed to suppress higher-order modes

around the rim of the APWLL. Each corrugation has the same tooth thickness

D and the period P . The depth of the corrugation is between �0=4 and �0=2.

For the design of the corrugations, the design procedure of the corrugations for
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Figure 4.12: (a) A complete antenna with the APWLL and the corrugated �ares. (b)

Cross-sectional view of the complete antenna.

a corrugated horn is followed [Law66], [Men74], [Lov76], [Cla84].

As mentioned in Sec. 3.1, if the depth of the corrugation is between �0=4 and

�0=2, the corrugated surface becomes capacitive and hence stops TM surface

waves on the corrugated surface. Therefore, the energy on the surface is added

to that in the middle since the �eld on the corrugated surface cannot exist.

From the above reasons, a cosine distribution is achieved by the corrugated

�ares, at the same time little edge di�raction occurs at the end of the �ares.

As a result, the APWLL has a very low side lobe level and a desired HPBW.

4.3.2 Far-�eld calculation of the corrugated �ares

In order to compute the far �elds of the �ares, the aperture �elds which are

available in the corrugated pyramidal horns are used [Men76]. This method is

reasonable since both the symmetric corrugated �ares and a corrugated horn

produce a cosine �eld distribution at the aperture due to their corrugated

surfaces as illustrated previously. Also, as shown in Fig. 4.13, the cross section

of a corrugated pyramidal horn is nearly similar to the one in Fig. 4.13(b).
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Figure 4.13: (a) Geometry of a corrugated pyramidal horn. (b) Its cross-sectional

view.

Moreover, as shown in Fig. 4.9, the ray paths at the �ctive aperture are parallel

to each other and bound into the �ctive aperture of the APWLL. Especially,

with much larger �ares than the radius of the APWLL, the �ares is quite similar

to the horn. As a result, the far-�eld patterns of the two cases will be nearly

the same in elevation.

The complete derivation of the far �elds is given in appendix C. Here, only

the far-�eld pattern in E-plane is presented.

E = 0 (4.15a)

E� = jk0
e�jk0R

2�R
E0A �B

���
 =0Æ

(4.15b)
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A =
1

2
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��e

k0

�
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j �e

2k0

�
�

a0
+k sin(�)

�
2�
C(t2)� jS(t2)� C(t02) + jS(t02)

�
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�
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�
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C(s2)� jS(s2)� C(s02) + jS(s02)

��
 =0Æ

(4.15c)

B =

Z
y0
Eax(y

0)dy0: (4.15d)

As explained in appendix C, at  = 0Æ (E-plane), the term B is independ-

ent of the angle �. For the numerical calculation of the far-�eld pattern, the

approximation of the Fresnel integrals is used (see the appendix C.2) and the

variables are transformed as follows:

t2 = 2
p
Te(1�

Ve

4Te
�

1

8Te
)

t02 = 2
p
Te(�1�

Ve

4Te
�

1

8Te
)

s2 = 2
p
Te(1 +

Ve

4Te
�

1

8Te
)

s02 = 2
p
Te(�1 +

Ve

4Te
+

1

8Te
) (4.16a)

where

Te =
1

8

� a0
�0

�2 � 1

�e=�0

Ve =
a0

�0
sin(�): (4.16b)

Therefore, with the horn dimension �e and a0 given, the E-plane pattern is

computed from Eq. (4.15).



Chapter 5

Veri�cation and measurement

in 76-77GHz range

In the previous chapter, a periodic and regular metal post structure is used for

an APWLL instead of a homogeneous isotropic dielectric. Also, a corrugated

surface with its property of suppressing surface waves is applied for the design

of the corrugated �ares of the APWLL antenna. In this chapter, the properties

of the PBG structures and the design procedures of the APWLL antenna are

veri�ed. For veri�cation, APWLLs are simulated by HFSS and two APWLL

antennas for an ACC radar at 76.5GHz are designed and measured.

5.1 Simulation and design of an APWLL an-

tenna at 76.5GHz

First, the far �eld of the APWLL is computed at 76.5GHz using the result

in Sec. 4.2.2. With the help of the calculation, the appropriate dimensions

of the feed and the APWLL are chosen for a desired HPBW and side lobe

levels. In order to show the isotropy of the lattices and the shapes of the metal

posts proposed in Ch. 3, the APWLLs with the lattices and the post shapes

are simulated with the aid of HFSS and then the performances of the lattices

are evaluated. Also, the in�uences of the post shapes and the post dimensions

on the far-�eld pattern are investigated. In Figs. 4.2 and 4.6, two ways of the

realization of regular and periodic metal posts are described for the application

to the APWLL. Here since the way in Fig. 4.2 has clearly the low pro�le, the
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case of constant spacing is selected for the design of APWLLs.

Second, the far �eld of the corrugated �ares is computed at 76.5GHz, and

then using the result, the proper dimensions of the corrugated �ares are selec-

ted.

5.1.1 Determination of the dimensions of the feed and

lens

A far �eld of an APWLL in H-plane (in azimuth) is directly in�uenced by

the far �eld of a primary feed Ep(�) as described in Sec. 4.2.2. Therefore, in

order to determine the proper dimensions of the feed and the lens for a desired

pattern, the relation between the dimensions of the primary feed and the lens

and the far �eld should be investigated in advance.

Here a H-plane sectoral horn is selected as a primary feed. As shown in

Fig. 5.1(a), the feed horn is determined by a �are length � and an aperture

width a. Since the electric �eld distribution of the horn in the x direction Ep(x)

(see Eq. (4.7)) is constant, it is assumed that the electric �eld distribution of

the lens aperture in the x direction Ea(x) (see Eq. (4.11)) is also constant in

calculating far �elds.

As the �rst prototype, an APWLL of a 50mm diameter (2r0 = 12:75�0,

�0 = 3:92mm) is designed. In Fig. 5.1(a), the far-�eld calculation's procedure

of the complete antenna system is displayed. With Eq. (4.13b), the radiation

pattern in H-plane is computed at 76.5GHz. Figure 5.1(b) shows HPBWs and

�rst side lobe levels as functions of the horn dimensions. The dashed line points

out an equi-HPBW while the solid line is an equi-�rst side lobe level.

Also it shows that as the aperture width of the feed horn a and the �are

length � are growing, �rst side lobe levels become lower, while HPBWs get

larger. To explain the reason, the in�uence of feed dimension on the �eld

distribution of the real lens and feed horn is displayed in Fig. 5.2. Figure 5.2(a)

shows that with larger a, the �eld of the feed horn at the edge is reduced.

Further, the shape of current distribution in the middle is getting narrower

since the directivity of the feed horn increases with larger a. The facts of

lower edge �eld and narrower current distribution have a direct e�ect on the

�eld distribution of the real lens aperture. That is, as is shown in Fig. 5.2(b),

with larger a, the edge �eld of the lens which mainly leads to higher side lobe

level of radiation pattern of the APWLL is lower [Tay55], [Joh93] and the

�eld distribution near the middle of the lens is getting closer to the cosn form

distribution. As a result, with primary feeds of higher gain and lower side lobe,

the APWLL supports larger HPBW and lower side lobe levels. In [San95], a



(a)

(b)

Figure 5.1: (a) Illustration of the APWLL antenna for the calculation of the far �eld:

a H-plane sectoral horn and an APWLL. (b) HPBW and �rst side lobe

level as a function of the feed horn dimensions for 50mm APWLL.

couple of techniques for proper primary feeds are described in case of spherical

Luneburg lens in order to reduce side lobe level.

However, for a practical determination of the proper dimensions of the

feed horn, it should be considered that if � < a, the feed horn will have high

re�ection and serious phase errors as well. It means that � should be larger

than a. For � > a, Fig. 5.1(b) shows that the variation of a has a main in�uence

on the lens performance of a HPBW and a �rst side lobe level.

As a prototype, a H-plane sectoral horn for the 50mm APWLL which

has a HPBW of 4.5Æ and the �rst side lobe < -19 dB in azimuth is designed.
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Figure 5.2: In�uence of the feed horn on the �eld distribution of the feed horn and the

lens aperture with � = 15mm. (a) Field distribution at the feed aperture.

(b) Field distribution at the real lens aperture (see Fig. 4.9 for the real

lens aperture.).

Using the simulation result in 5.1(b), a H-plane sectoral horn of a = 3:6mm

and � = 10mm is determined for a primary feed. In Fig. 5.3, the simulated

far-�eld pattern for the 50mm APWLL is shown.

In Fig. 5.4, the in�uence of the lens radius r0 is shown with the horn

dimensions �xed. Note that the patterns are normalized. The variation of the

lens radius has little in�uence on the �rst side lobe level.
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Figure 5.3: Simulated H-plane radiation pattern of the 50mm APWLL with

a = 3:6mm and � = 10mm (see Fig. 5.1).
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Figure 5.4: In�uence of the lens radius on the far-�eld pattern for a = 3:6mm and

� = 15mm.

In Tab. 5.1, the comparison of the three cases is conducted. On the base of

the table, the beam factor (BFsim:H) is derived and used later to approximately

predict the required dimension of the APWLL for a desired HPBW. That is,

BFsim:H = �HPBW �
2� r0
�0

= 56:6Æ: (5.1)

It is noted that Eq. (5.1) is valid for only the feed horn dimension a = 3:6mm

and � = 15mm.



Table 5.1: HPBWs and �rst side lobes for di�erent radii r0

radii r0 (see Fig. 5.1)

12mm 25mm 50mm

HPBW (Æ) 9:2Æ 4.44Æ 2.22Æ

�rst side lobe -18.4 dB -18.8 dB -18.9 dB

In Sec. 4.2, the in�uence of the deviation of the parallel-plate spacing h on

the metal post pro�le is investigated. According to the results, the spacing of

the parallel-plate h = 1:9mm (< �0=2) is chosen to in order to a) reduce the

sensitivity by the deviation of the spacing in fabrication and b) suppress higher

modes near the rim of the APWLL.

5.1.2 Determination of post dimensions and proper lat-

tices

5.1.2.1 Post dimensions

In determining the proper post dimensions, the requirements explained in the

previous chapters should be considered. First, as described in Ch. 3, the period

P � �0 and the width of the posts D < P=2 are required for the TEM mode

in the PBG. Second, in Ch. 4, D � P=2 is recommended to avoid the side

e�ect caused by the top surface of the posts such as parasitic capacity and so

on. However, for the mechanical stability in fabrication, the width D may not

be so small at 76.5GHz.

By considering the above conditions, �rst, P = 0:78mm (0:2�0) is de-

termined. In order to decide the width of the posts D, the in�uence of D on

the radiation pattern of the APWLLs is investigated for a square lattice with

square posts with the aid of HFSS. Three di�erent cases of the width are chosen

for the simulation. The �rst is D = 0:28mm (W = 0:64 from Eq. (3.18)), which

is smaller than P=2. The second is D = 0:36mm (W = 0:54), which is nearly

equal to P=2. The last is D = 0:44mm (W = 0:44), which is larger than P=2.

In Fig. 5.5, the geometry of an APWLL for the simulation is shown for

D = 0:36mm is shown. An APWLL's diameter of 5.1�0 is chosen. By consid-

ering the spacing of the parallel-plate waveguide h = 1:9mm, the height of the

feed horn is �xed to 1:9mm.

Figure 5.6 shows the simulation results. As is shown, both cases of



feed horn

Figure 5.5: Geometry of an APWLL with a square lattice and square posts for the

simulation by HFSS.
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Figure 5.6: Simulation results of APWLLs for di�erent post width D with a constant

period P = 0:78mm.

D = 0:28mm and D = 0:36mm di�er little. However, with D = 0:44mm,

the property of the APWLL comes to much worse than two cases. As a result,

it is recommended that the post widths within these ranges of the weighting



factor W > 0:5 and the period P � �0 should be determined.

For the next simulations, the proper dimension of the square metal posts

is determined to P = 0:78mm and D = 0:28mm, so that W = 0:64. In sim-

ulation of circular metal posts and hexagonal metal posts, P = 0:78mm and

D = 0:38mm are used, so that W = 0:62 and W = 0:58. Using the above

dimensions, the pro�le of post height is computed numerically by Eq. (4.2).

In Fig. 5.7, the pro�les for the two cases are presented. Note that the

0
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0.3
0.4
0.5
0.6

20 10 0 10 20

square posts
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r (mm)

t (
m

m
)

Figure 5.7: Post pro�les for the square posts D = 0:28mm and the circular posts

D = 0:38mm with P = 0:78mm. The pro�les are extremely exaggerated.

height is extremely exaggerated. For the circular posts, the tallest post is

0.626mm in the middle of the APWLL while for the square posts, the tallest

post is 0.616mm.

5.1.2.2 Proper lattices for an isotropy

To realize a wide beam scanning, an isotropy of the PBG structure is strongly

required, so that the performance of the APWLL should be independent of scan

angles or feed position. It is mentioned in Ch. 3 that the isotropy is related

to a lattice of the metal post structure and such lattices as hexagon, square,

and triangle are proposed as reasonable lattices for an isotropy. In order to

evaluate each lattice, the APWLLs with the above three lattices are simulated

for a couple of di�erent scan angles with HFSS. In simulation, the operating

frequency is 76.5GHz and a H-plane sectoral horn 3.6mm � 1.9mm is used.

In simulations, it is possible to examine the beam scanning of the APWLL

by two ways. One is to turn the feed horn with the posts �xed. The other

is to turn the complete posts, with the horn �xed. In simulation, the second

method is selected. Also, later in measurement, the second way is selected to

prove the isotropy of the metal post structure by showing the property of beam
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Figure 5.8: Examples of isotropic structures. (a) Square lattice with square posts. (b)

Square lattice with hexagonal posts. (c) Hexagonal lattice with square

posts. (d) Triangular lattice with hexagonal posts.

scanning.

In Fig. 5.8, top views of four APWLLs with three lattices and two di�erent

shapes of the metal posts at a scan angle 0Æ are presented. The diameter of the

three APWLLs is �xed to 5.1�0. They are simulated at a scan angle of � = 6Æ.

In simulation, the metal posts are rotated by an angle 6Æ with the horn �xed.

In Fig. 5.9, the H-plane radiation patterns of the above cases are plotted.

The simulations show that the hexagonal lattice with square posts points out

about 3 dB higher �rst side lobe than the others whereas all patterns have
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Figure 5.9: H-plane radiation patterns of the APWLL in Fig. 5.8 simulated by HFSS.
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Figure 5.10: H-plane radiation patterns of the APWLL with the square lattice and

square posts for di�erent scan angles.

about 11.5Æ HPBW.

In order to verify a wide scan angle of the APWLL, the APWLL in

Fig. 5.8(a) is simulated at two more di�erent scan angles of 0Æ and 15Æ.

Figure 5.10 shows the radiation pattern in H-plane. The three patterns

di�er little depending on scan angles. As a result, from Figs. 5.9 and 5.10, it is

found that the APWLLs with the lattices are capable of guiding a wave in the

APWLLs, independent of the feed position. Therefore, the metal post structure

with the lattices support the isotropy. The results lead to the conclusion that

for the purpose of an isotropy the APWLL should be composed of discrete
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Figure 5.11: Isotropic structures with circular posts. (a) square lattice with circular

posts. (b) hexagonal lattice with circular posts.

metal posts and have a two-dimensional lattice for the complete APWLL.

Now APWLLs with circular posts are investigated. In Fig. 5.11, two AP-

WLLs are represented. As shown, the dimensions of the posts are identical and

the diameter of two APWLLs is 5.1�0 for the hexagonal lattice and 5.2�0 for

the square lattice. The lattices are di�erent, so that the performance of the

two lattices are evaluated.

Figure 5.12 shows the H-plane radiation patterns of the two cases. For the

hexagonal lattice, two simulation of the APWLL at two scan angles of 0Æ and

6Æ are displayed while for the square lattice, the APWLL is simulated only at

the scan angle 6Æ. The HPBWs are 10.1Æ for the square lattice and 11Æ for the

hexagonal lattice (note that the diameter of the APWLL with the hexagonal

lattice is 0.1�0 smaller than that with the square lattice). In terms of a �rst

side lobe level, the APWLL with the hexagonal lattice is about 3 dB better.

Therefore, the APWLL of the hexagonal lattice and circular posts is better. In

addition, the re�ection coe�cient S11 for the hexagonal lattice is -18 dB while

for the square lattice S11 = -15 dB.

Compared with the simulations of the APWLLs with square or hexagonal

posts in Fig. 5.9, the two APWLLs have lower side lobe levels while the dir-

ectivity is nearly the same. Furthermore, the HPBW is also improved. The

reason is that as explained in Fig. 3.7, the projection length of the circular post

is always identical, so that a circular post will support the same impedance,
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Figure 5.12: H-plane radiation patterns of the APWLLs composed of circular metal

posts for two di�erent lattices.

regardless of the direction of the propagating wave. As a result, it is found that

the APWLL with circular posts works better and is more isotropic than that

with the square and the hexagonal posts.

In Fig. 5.13, two radiation patterns in elevation (E-plane) are displayed for

the hexagonal lattice and circular posts shown in Fig. 5.11(b). The solid line

is the simulation by HFSS, the dashed-dotted line is calculated by Eq. (4.14a).

Both of the patterns are in a good agreement.

Figure 5.14 shows the distribution of the electric �eld in the APWLL.

As shown, while leaving the feed horn, a cylindrical wave propagates (see that

the dotted curve near the feed is a cylindrical curve which is a equiphase line).

While the wave is propagating through the lens, the cylindrical curve becomes

a line (see the dotted linear line at the lens aperture) since the phase velocity

around the rim is faster than that in the middle as explained in Sec. 4.1.

As a result, a cylindrical wave from the H-plane sectoral horn is gradually

transformed into a plane wave at the �ctive aperture by guiding the cylindrical

wave.

It is also found that compared with the simulation with a Hertzian dipole as

a primary feed in [Gre99], the more power propagates through near the middle

of the APWLL since the feed horn has higher gain. In the right side of the

Fig. 5.14, electric �eld distribution near the �ctive aperture is displayed. It is

seen that the �elds are bound by the �ctive aperture.
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Figure 5.13: E-plane radiation patterns of the APWLL computed by HFSS and by

Eq. (4.14a) in case of a hexagonal lattice with circular posts.
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Figure 5.14: Illustration of electric �eld in the APWLL with the hexagonal lattice

and circular posts. The dotted lines show equiphase.



5.1.3 Design of symmetric corrugated �ares

5.1.3.1 Determination of dimensions of corrugated �ares

In order to design a proper corrugated �are for a desired pattern, the far �eld of

the APWLL antenna in elevation is computed at 76.5GHz without considering

the edge di�raction using Eq. (4.15). Figure 5.15 shows HPBWs as functions

of the �are angle �e and length �e. The curves are equi-HPBW lines. It is

seen that each curve has an optimal range for a proper dimension of the �ares

to achieve a desired HPBW. For instance, consider the curve of 14.7Æ HPBW.

As shown in the simulation, the �are angle should be chosen near at 18Æ for a

minimal �are length for 14.7Æ HPBW. Also, the simulation result shows that

as HPBWs are getting smaller, optimal �are lengths �e increase exponentially

and then the �ares become larger.

From the above simulation, a beam factor (BFsim:E) for a minimal �are

13.4°
12.1°

3.4°

14.7°

16.1°

17.4°
18.7°

20.1°
21.4° 22.7°

24°

26.7°
29.3°20.1°

17.4°

A

26.7°29.3°
24°

θe

ρe ρ e
 (m

m
)

60

50

40

30

20

θe (deg)
      12       16          20       24     28   30

Figure 5.15: HPBWs as functions of �are angles �e and the �are length �e.

length for a HPBW is derived

BFsim:E = �HPBW �
2 �e tan �e

�0
� 93Æ: (5.2)

The beam factor is used to predict approximately a required optimal dimension

of corrugated �ares for a desired HPBW later.

As a prototype, a pair of rotationally symmetric corrugated �ares for a 20Æ

HPBW is designed. Referring to Fig. 5.15, �e = 20:2mm and �e = 25Æ (see



the point A in Fig. 5.15) are determined for a 20Æ HPBW. The simulation is

displayed in Fig. 5.16.
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Figure 5.16: E-plane radiation pattern calculated by Eq. (4.15) for the determined

dimensions of �e = 20:2mm and �e = 25Æ.

5.1.3.2 Design of corrugations

As described previously, to suppress the TM surface wave on the corrugated

surface, the depth of the teeth should be between �0=4 and �0=2. Considering

the mechanical stability and electronic properties such as low power loss and

low re�ection, a tooth thickness of 0.2mm and a period of 0.9mm (0:23�0) are

selected [Men74].

Figure 5.17 shows the cross sectional view of the �are. It is divided into

three parts. The �rst part is the cuto� ring. In this part, higher modes at the

rim of the APWLL are suppressed since the spacing is lower than �0=2. For

the �ares, the cuto� ring of 2.2mm is chosen. The second part is transition

near the throat of the �ares for low re�ection. The depth of corrugations is

decreased gradually from about �0/2 to �0/4. Since corrugations with a depth

of about �0=2 act like a conducting surface, in this transition part, the re�ec-

tion at the transition is reduced [Olv92]. The third part is the high impedance

region between the end of the transition and the end of the �are. The cor-

rugations are about �0/4 deep. In this part, the TM surface wave is strongly

prohibited. Referring to [Men74], no less than 8 corrugations which are �0=4

deep are necessary for both a cosine amplitude and proper phase distribution

at the aperture of the �ares. In Fig. 5.17, the cross sectional view of lower part



of the �ares for a 20Æ HPBW is presented.

It should be mentioned that the simulation results and the novel approach

2.2 mm cutoff ring

25°

20.2 mm50mm APWLL

x

P=0.9 mm

D=0.2 mm

Figure 5.17: Cross-sectional view of the rotationally symmetric corrugated �are for

the 50mm APWLL.

for designing the rotationally symmetric corrugated �ares are unique to de-

termine the proper �are dimensions for a desired HPBW and �rst side lobe.

5.2 Fabrication

5.2.1 APWLL

To verify the simulation results of the previous section, two APWLLs are fab-

ricated. One is a 50mm APWLL with a square lattice and square metal posts.

The other is a 50mm APWLL with a hexagonal lattice and circular posts.

5.2.1.1 50mm APWLL with a square lattice and square posts

The APWLL is composed of two aluminum plates. One plate is a plane alu-

minum plate, and the other is provided with the PBG structure on the surface.

As determined in Sec. 5.1.2, the width of square posts D is 0.28mm and the

period P=0.78mm. The spacing h of the parallel-plate waveguide is 1.9mm.

The lattice is a square. The APWLL's diameter is 50mm.

The fabrication procedure of the plate with the PBG structure is divided

into three steps. First, a metal surface curvature calculated by Eq. (4.2) for the

metal post height is fabricated on a computer numeric control (CNC) revolving



machine. The machine has the tolerance of 1�m. Second, a CNC milling ma-

chine produces the posts by machining the curve. In the end, it is etched by

an acid to get away the metal wastes between the posts and around the posts.

The PBG structure consists of about 3000 square posts.

In Fig. 5.18, a picture of a small part of the APWLL is presented to show

(a)

(b)

0.78 mm

Figure 5.18: (a) Photograph of one part of the APWLL where the PBG structure is

implemented. Diameter is 50mm. (b) Photograph of the PBG structure

in the APWLL. The lattice is a square and the metal posts are a square.

the posts. As illustrated in Fig. 5.18, the square posts are arranged periodically

and regularly. The fabrication error of the post width is also measured, they

are within �20�m.

In contrast, the plain aluminum plate for the other plate is produced by the

CNC revolving machine with a diamond cutter. The plate looks like a plane

metal mirror.



5.2.1.2 50mm APWLL with a hexagonal lattice and circular posts

From the simulations in the previous section, it is shown that the APWLL

with a hexagonal lattice and circular posts shows the best performance. For

veri�cation, the 50mm APWLL with circular posts and a hexagonal lattice is

fabricated. Also it is compared with the 50mm APWLL with square posts and

a square lattice.

For fabrication, the milling cutter of 0:5mm diameter is used due to its

durability. The diameter of the posts D is determined to 0.28mm while

P = 0:78mm.

0.78 mm

Figure 5.19: Photograph of the PBG structure in the 50mm APWLL with a

hexagonal lattice and circular posts.

5.2.2 H-plane sectoral horn for a primary feed

The procedure of fabrication is the same as that of the 50mm APWLL with

square posts and a square lattice. In Fig. 5.19, a picture of a part of the APWLL

is presented. The H-plane sectoral horn with an aperture 3.6mm � 1.27mm is

made of a WR-10 waveguide (inside dimension = 2.54mm � 1.27mm, outside

dimension = 4.58mm � 3.3mm including the copper thickness).

As shown in Fig. 5.17, the �ares have a cuto� ring between the rim of the

APWLLs and the throat of the �ares. Therefore, when the feed horn excites

the complete APWLL with the �ares, the feed has to be �t to the parallel-plate

spacing h=1.9mm. In Fig. 5.20, the feed horn whose outside copper thickness

is thinner is displayed. In measurement, the aperture of the horn is placed in

the middle of the parallel-plate waveguide.
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Figure 5.20: Photograph of the H-plane sectoral horn.

5.2.3 Rotationally symmetric corrugated �ares

The fabrication of the �ares is divided into two steps. First, the CNC revolving

machine fabricates the plane �ares which look like a biconical antenna, and then

the circular corrugations are engraved on the �ares.

In Fig. 5.21, one part of the �ares for a HPBW of 20Æ is presented. The

50 mm

Figure 5.21: Photograph of the �are for a HPBW of 20Æ.

�ares are composed of 17 corrugations, including the transition part and the

high impedance part. A 2.2mm cuto� ring is also machined. To remove a



small amount of edge e�ect on the top edge, the top edge of the �ares becomes

round.

5.3 Measurements

In Fig. 5.22(a), the experimental setup is displayed. As seen, the entire an-

tenna is composed of an APWLL, a pair of rotationally symmetric corrugated

�ares, and the feed horn. In Fig. 5.22(b), the detailed AWPLL antenna and
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Figure 5.22: (a) Experimental setup. (b) Entire 50mm APWLL with the �ares and

its geometrical dimension.

its geometrical dimension are displayed. A horn antenna as a receiver antenna



which has 25.0 dBi gain is used. The distance between the APWLL antenna

and the receiver is about 3m.

5.3.1 H-plane sectoral horn

First, the far-�eld patterns of the feed horn shown in Fig. 5.20 are measured.

In Fig. 5.23, the simulation and the measurement of the H-plane patterns are

plotted. The simulation of the pattern is performed using the formulas for

the far-�eld pattern of the horn in [Bal97]. The simulated pattern is broader

than the measured one. As explained in Fig. 5.2, it is expected in the next

measurement that the fact has an e�ect on larger HPBWs and lower �rst side

lobe. E-plane pattern of the feed horn is also displayed in Fig. 5.23.
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Figure 5.23: H-and E-plane radiation patterns of the feed horn.

5.3.2 Fraunhofer region

For the appropriate measurement of a large antenna, it is important to �nd in

advance the far-�eld or Fraunhofer region (RF) where the �eld at the antenna

under test approximates a uniform plane wave. As is well known, the following

relation is required for the maximum phase error smaller than �0=16 which is



commonly acceptable for the far �eld [Kra88], [Bal97], [Wie99]. That is,

RF =
2D2

E

�0
(5.3)

where DE is a maximum overall dimension, for example the largest diameter,

the largest diagonal length and so on.

For the �ctive aperture of the 50mm APWLL with the �ares, 90:4mm

by 18.5mm (see Figs. 5.22(b)), the maximum overall dimension DE is the

diagonal length of 92.2mm, so that the distance for the far-�eld measurement

RF > 4:3m is obtained by Eq. (5.3). However, as the phase distribution of

the APWLL at the �ctive aperture is constant in azimuth, only the maximum

phase error in elevation for the far �eld is to be considered. That results in

DE = 18:5 mm and RF > 0:18m. Therefore, the 3m distance is large enough

to measure the far-�eld pattern of the APWLL antenna.

5.3.3 50mm APWLL with a square lattice and square

posts

Figure 5.24 illustrates measured H-plane radiation patterns for three di�erent

scan angles 0Æ; 10Æ; and 20Æ without the �ares. In order to measure the APWLL

at beam scan angles 10Æ and 20Æ, the AWPLL is simply rotated with the feed

horn �xed like the same way. The HPBW of the antenna is 5:2Æ. The �rst side

lobe is -17 dB. With the result, the beam factor (BFmea:H) is derived for an

approximate prediction of other APWLLs.

BFmea:H = �HPBW �
2� r0
�0

= 66Æ: (5.4)

The results verify that the APWLL antenna has a wide scan angle in azimuth

and the PBG structure is nearly isotropic.

Figure 5.24 also shows the simulation (dashed-dotted line) calculated by

Eq. (4.13b). Compared with the simulation result, the measurements have a

minimal increase of the HPBW as expected from the results in Fig. 5.23. How-

ever, in contrast to the prediction, the �rst side lobe becomes worse. The reason

is that edge di�raction by the front square posts where the waves leave the AP-

WLL disturbs wave propagation and the APWLL is not fabricated ideally. The

cross-polarization in case of a scan angle 0Æ is measured. It is lower than -25 dB.

In Fig. 5.25, the simulated and measured E-plane radiation patterns of

the APWLL without the �ares are illustrated. The patterns are normalized.

The solid line is the simulation result of the 5.1�0 APWLL in Fig. 5.8(a) by



-30

-25

-20

-15

-10

-5

0

-20 -10 0 10 20 30 40

re
la

tiv
e 

po
w

er
 (

dB
)

simulation

cross-
polscan angle 0°

10° 20°

azimuth (deg)

Figure 5.24: H-plane radiation patterns for three di�erent scan angles without the

corrugated �ares and simulation result. Cross-polarization for a scan

angle of 0Æ.

HFSS. The dashed line is the measurement result. Both results are in good

agreement, regardless of the radius of the APWLL.

The antenna is also measured by adding the symmetric corrugated �ares to

the APWLL (see Fig. 5.22(b)). The measurements in Fig. 5.26 show that the

antenna has also a wide scan angle in azimuth like the APWLL antenna without

the �ares. The HPBW is 4:8Æ and the �rst side lobe is -20 dB. Compared with

the antenna without the �ares, the antenna with the �ares has an about 0:4Æ

narrower HPBW and -2.5 dB lower �rst side lobe. The reason is that the

symmetric corrugated �ares remove the edge di�raction in both elevation and

azimuth.

In Fig. 5.27, the simulated and measured E-plane radiation patterns are

illustrated. Side lobe levels point out lower than -27 dB due to the corrugated

�ares. The HPBW is 19:5Æ. In terms of the HPBW, both the measurement

and the calculation are in good agreement. Since the aperture becomes larger

and the HPBW becomes narrower by adding the �ares, the directivity of the

complete antenna is about 6.5 dB higher than that of the APWLL without the

�ares.

The re�ection coe�cient (S11) of the APWLL antenna is also measured. S11
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Figure 5.25: Simulated and measured E-plane radiation patterns without the corrug-

ated �ares.

of only the APWLL with the �ares amounts to -13 dB whereas the complete

APWLL antenna with the �ares has S11=-14 dB due to the corrugated �ares.

The gain of the antenna is measured by comparing the maximum value

with that of the reference horn. The gains of the complete antenna and the

APWLL only are 24 dBi and 17.5 dBi, respectively. Using the general formula

for approximating gain in [Sch51], [Tai76], and [Stu98], the approximate gain

can be predicted from the measured HPBW of the patterns in H-and E-plane.

The formula is

G � 10 log(
26000

HPBWHÆ �HPBWEÆ

): (5.5)

In the case of the APWLL itself without the �ares, HPBWHÆ = 5:2Æ and

HPBWEÆ = 62:3Æ. Eq. (5.5) leads to an approximate gain of 19.06 dBi. Also

in the same way, the gain for the complete antenna is 24.41 dBi. Considering

the aperture e�ciency, the measured gain is consistent with the calculation.

Finally, the complete antenna with the corrugated �ares is measured us-

ing a H-plane sectoral horn of a =5.3mm. In Fig. 5.28, measured H-plane

radiation pattern is plotted. The marked-dotted line is the result calculated

by Eq. (4.13b). The dashed line is the measurement of the APWLL using the



-30

-25

-20

-15

-10

-5

0

-20 -10 0 10 20 30 40

re
la

tiv
e 

po
w

er
 (

dB
)

0° 10° 20°

azimuth (deg)

Figure 5.26: Measured H-plane radiation patterns for three di�erent scan angles with

the corrugated �ares (see Fig. 5.22).
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Figure 5.27: Simulated and measured E-plane radiation pattern of the APWLL with

the corrugated �ares.
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Figure 5.28: The in�uence of the feed dimension a on the patterns (see Fig. 5.1). The

patterns are normalized.

feed horn a =3.6mm. In terms of HPBW, both the simulation and the meas-

urement are in a good agreement. Compared with the measured pattern using

the feed horn a =3.6mm, the HPBW becomes higher while side lobe levels are

lower. In other words, Fig. 5.28 veri�es well the simulation results in Figs. 5.1

and 5.2 that the HPBW of the APWLL becomes higher and the �rst side lobe

is getting lower as the aperture width of a feed horn is getting larger.

5.3.4 50mm APWLL with a hexagonal lattice and circu-

lar posts

For the measurement of the 50mm APWLL with a hexagonal lattice and cir-

cular posts, the setup for the 50mm APWLL with a square lattice and square

posts is used in Fig. 5.22.

In Fig. 5.29, the measured and simulated H-plane radiation patterns of the

APWLL without the �ares are plotted. The simulation is done using the result

of Eq. (4.13b). The APWLL is measured at three di�erent scan angles to verify

the isotropy of the circular metal post structure and the multiple beam property

of the APWLL designed by circular metal post structure. The patterns point

out a 4.9Æ HPBW and the �rst side lobe level is lower than -19 dB. Compared



with the above 50mm APWLL with the square lattice and square posts, the

APWLL with a hexagonal lattice and circular posts works better in terms of

HPBW and the �rst side lobe. The gain of 23.8 dBi is measured. As a result,

the measurement veri�es the simulation result in Sec. 5.1.2 and the theory in

Sec. 3.2.1 that the combination of hexagonal lattice and circular posts is better

than that of a square lattice and square posts.
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Figure 5.29: H-plane patterns of the APWLL with a hexagonal lattice and circular

posts without the �ares for three beam scan angles.

It is interesting to show how good the APWLL with the combination of a

hexagonal lattice and circular posts is, compared with the Luneburg lens made

of a real homogeneous isotropic dielectric. In [Par01], a parallel-plate Luneburg

lens (PPLL) similar to the APWLL is reported. The appearance of the PPLL

is similar to that in Fig. 4.1(c). Since two antennas, PPLL and APWLL are

quite similar, related to the properties and main principles, the measurement

of APWLL is compared with that of the parallel-plate Luneburg lens (PPLL)

using a homogeneous dielectric, para�n wax in [Par01] in order to estimate the

performance of the metal post structure for an arti�cial dielectric. In Fig. 5.30,

comparing two measured H-plane patterns is displayed. In terms of gain, the

gain of the PPLL is about 0.7 dBi higher than that of the PPLL. However, as

shown in Fig. 5.30, two measured patterns are in good agreement. Thus, it can

be said that the circular metal post structure as an arti�cial dielectric works



as well as a real dielectric.
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Figure 5.30: Comparison of two measured patterns between the APWLL with circular

posts and the asymmetric parallel-plate Luneburg lens using a homogen-

eous dielectric in [Par01].

In order to check a bandwith of the APWLL, measurements are performed

at several di�erent frequencies. Figure 5.31 shows four H-plane radiation pat-

terns at 76GHz, 76.5GHz, 77GHz, and 77.5GHz. The patterns are normalized

despite the minimal di�erence of the gain. As is shown, the patterns di�er little

in terms of side lobe level and HPBW. It means that the APWLL has more

than 1.5GHz bandwidth.

The APWLL antenna with the �ares for 20Æ HPBW is also measured. As

shown in Fig. 5.32, the �ares have little in�uence on the APWLL's property of

a wide scan angle. But the side lobe levels become lower than those with the

�ares while the HPBW becomes 0.2Æ higher.

Figure 5.33 shows E-plane radiation patterns. The dashed line is co-

polarization of the APWLL without the �ares and the solid line is co-

polarization of the complete antenna with the �ares. The complete antenna

with the �are has 19.9Æ HPBW. Also, the very low side lobe levels are due

to the �ares as explained previously. It shows that the gain of the complete

antenna is 7 dB higher than that of the APWLL without the �ares. The cross-

polarization is lower than -30 dB.
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Figure 5.31: H-plane patterns of the APWLL with a hexagonal lattice and circular

posts without the �ares in case of three di�erent operating frequencies.
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posts with the �ares for three beam scan angles.
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posts without and with the �ares. Cross-polarization with the �ares.

In Secs. 1.2.1 and 4.1, it is mentioned that the phase distribution of the

APWLL in azimuth is constant since a plane wave leaves the APWLL. Also,

as shown in the simulation in Fig. 5.14, the phase of the electric �eld becomes

constant at the �ctive aperture. Figure 5.34 shows the measurement of the

phase distribution of the entire antenna with the �ares. It is seen that in the

main lobe, the phase is nearly constant.

For a lens antenna, the exact focal point is directly related to the per-

formance of the lens antenna. The in�uence of the focal point is illustrated

in Fig. 5.35. As shown, for a distance d =2mm, the �rst side lobe increase

by about 5 dB, while the HPBW is little varied. It means that if the horn is

moved in radial direction by the distance d, it has a direct in�uence on the side

lobe levels because the lens is defocused and the phase errors in the aperture

increase.

5.4 Virtual-source APWLL

In this section, the new challenge to reduce the size of the APWLL itself is

investigated. The main idea is based on the concept of the virtual-source
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WLL with a hexagonal lattice and circular posts.



Luneburg lens. It will be shown that using the concept, the APWLL size may

be reduced to the half.

5.4.1 Principle of a virtual-source APWLL

The basic concept of a virtual-source APWLL is based on the image theory.

In Fig. 5.36, the ray path of the APWLL is shown. As shown in the �gure, an

equivalent PEC or PMC re�ector is added through the center of the lens, and

then from the image theory, each real source has a virtual source on the other

side of the re�ector [Pee53b], [Pee54], [Joh84]. Therefore, the virtual-source

lens reduces to the half of the size of the complete lens.

In spherical Luneburg lenses, the concept of a virtual-source has been real-

Figure 5.36: Illustration of the virtual source Luneburg lens. The ray paths are dis-

played in the lens.

ized to cut down the volume of the lenses [Sch95], [Par00b], [Smi89]. However,

until now there has not been a virtual source Luneburg lens for PPLLs.

5.4.2 Simulation

In Fig. 5.37, the entire virtual-source APWLL for simulation is displayed. It is

seen that the APWLL has a hexagonal lattice and circular posts. The diameter

of the APWLL is 5.3�0. The period and the diameter of the posts are 0.78mm

and 0.36mm, respectively. It should be pointed out that in the simulation, the

feed horn is turned around to scan the beams with the entire posts �xed. The

simulation is performed at 76.5GHz.



Figure 5.37: Illustration of the virtual-source APWLL for the simulation by HFSS.

Table 5.2: Summary of the simulation results of the virtual-source APWLL for three

di�erent scan angles.

maximum (dB) S11 (dB) HPBW (Æ)

scan angle 40Æ 29.1 dB -18 dB 12.5Æ

scan angle 55Æ 29.7 dB -14 dB 12.2Æ

scan angle 65Æ 30.0 dB -14 dB 11.7Æ

full lens 32.1 dB -18 dB 10.5Æ

The simulation results for the scan angles 40Æ, 55Æ, and 65Æ are plotted

in Fig. 5.38. In Tab. 5.2, the results are summarized. Compared to the res-

ult of the full lens in Sec 5.1, the virtual-source lens has about 2.5 dB lower

directivity and about 1.5 dB larger HPBW. The reason can be understood by

means of Fig. 5.36. That is, the �ctive aperture becomes smaller since some

rays such as the ray I (gray solid line) in the �gure cannot be re�ected toward

the destination. It also shows that side lobe levels become higher than that of

the full APWLL. The reason is due to edge di�raction and spillover problem

by the rays such as the ray I.

Additionally, the electric �eld distribution in the APWLL for the scan angle

65Æ is illustrated in Fig. 5.39. It can be seen that the �eld distribution is dif-

ferent from that of the full APWLL in Fig. 5.14. The equiphase lines are not

shown clearly at the �ctive aperture. It is also noted that the virtual-source
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Figure 5.38: Radiation patterns of the virtual-source APWLL depending on three

di�erent scan angles.

Figure 5.39: Illustration of the electric �eld distribution in the APWLL for the scan

angle 65Æ.

APWLL has relatively strong �elds at the edge of the re�ector, which may

cause higher side lobe levels.

As a result, practically, the virtual-source APWLL does not function ex-

actly like the full APWLL. The main problem is due to the rays which do

not re�ect on the re�ector. Therefore, for the purpose of the virtual-source

APWLL, the length of the re�ector in the middle should be longer than the

diameter of the APWLL. Thus, the larger re�ector is able to re�ect the rest of

the rays toward the desired direction.



5.5 Limitations of corrugated �ares for ACC

radar application

As mentioned in [Sch98] and [Wie01], an antenna for an ACC radar at 76.5GHz

should support a medium-high resolution in elevation. In general, a HPBW of

the antenna should be narrower than 8Æ HPBW.

Consider the APWLL antenna. The simulation in Fig. 5.15 shows that for

8Æ HPBW, the �are length � is larger than 100mm. By considering an APWLL

of 50mm diameter, the total length of the entire antenna amounts to 250mm.

Certainly, in order to mount the ACC radar system including the APWLL

antenna inside a car's front grille, it is necessary that the entire antenna should

be as compact as possible. A typical automotive radar is roughly the size of two

stacked paperback books - just 140mm by 70mm by 100mm [Jon01]. There-

fore, although the virtual-source APWLL is helpful for a compact antenna, the

entire antenna is still too voluminous for a 76.5GHz ACC radar system due

to the excessive corrugated �ares. At the same time, since many corrugations

are machined on the great �are, additional losses in the metal is caused by the

corrugations and hence antenna gain lowers [Kra88].

In the next chapter, a couple of new approaches are proposed to overcome

the above drawbacks.



Chapter 6

Improvement and

optimization of APWLL

antenna for ACC radar

application using o�set

re�ectors

In this chapter, a new idea of using an o�set re�ector for the APWLL antenna is

presented to resolve the shortcomings of large �ares as described in Sec. 5.5. It

will be shown that with the aid of the o�set re�ector, a medium-high resolution

is achieved, simultaneously keeping the entire antenna compact. Moreover, a

higher gain is obtained since the metal losses by the o�set re�ector are low and

the o�set re�ector focuses rays of a feed in a desired direction.

Here two o�set re�ectors are considered. First, an o�set planar re�ector

is investigated empirically. Through the measurements of the o�set planar

re�ector, useful results for better understanding of the behavior of the APWLL

antenna with an o�set re�ector are obtained. Second, an o�set cylindrical

parabolic re�ector is considered. Using GO, the far �eld of the o�set cylindrical

parabolic re�ector is obtained. By usage of the far-�eld calculation, the o�set

cylindrical parabolic re�ector is optimized for a desired HPBW and a compact

re�ector.
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6.1 O�set planar re�ector

In Fig. 6.1, the o�set planar re�ector system is illustrated. It is composed of

an aluminum planar re�ector, a pair of symmetric corrugated �ares, and the

50mm APWLL. The 50mm APWLL with a square lattice and square metal

posts in Fig. 5.18 is used. The feed horn of 3:6mm � 1:29mm in Fig. 5.20

is used. The symmetric corrugated �ares for a 20Æ HPBW in Fig. 5.21 are

equipped to the 50mm APWLL in measurement. The re�ector is the size of

100mm by 150mm, taking the dimension of the corrugated �ares into consid-

eration. The re�ector has a 45Æ tilt angle and hence the rays of the �ares are

simply re�ected by the planar re�ector without focusing rays. By varying the

distance d1, the e�ective aperture on the re�ector can be enlarged or dimin-

ished. The entire re�ector antenna is measured at 76.5GHz (�0 = 3:92mm).

Figure 6.2(a) shows the measured radiation pattern (solid line) of the

APWLL antenna with the re�ector in azimuth (H-plane). The dashed line is

the measurement without the re�ector in Ch. 5. The distance d1 is 2�0. It has

4.4Æ HPBW. The �rst side lobe level is -20 dB. Compared with the pattern of

the APWLL antenna itself, the HPBW becomes about 0.4Æ narrower and the

gain is increased by 1.5 dB. A �rst side lobe level is little changed. The reason

of the improvement of gain and HPBW is that the e�ective aperture on the

re�ector becomes larger.

Figure 6.2(b) shows the measurement of beam scanning for three di�erent

scan angles. The side lobe levels of the patterns keep nearly constant while the

gain is somewhat lower for a larger scan angle.

Figure 6.3 shows the measurements in elevation (E-plane). The meas-

urements are conducted for d1 = �0 (dotted line) and d1 = 2�0 (solid line),

respectively. Both have a HPBW of about 16.5Æ. The dashed-dotted line is the

measurement without the re�ector in Ch. 5. The HPBW becomes 3Æ narrower

than that without the re�ector. In the patterns, the edge scattering is found

at the angle of around -40Æ. It is seen that as increasing the distance d1, the

angle of the edge scattering is moved to the left and the edge scattering has

little in�uence on the main lobe.

The above results of the planar re�ector conclude that using the planar

re�ector, the HPBWs of the antenna are somewhat improved in elevation and

in azimuth as well, and at the same time the gain of the antenna is enhanced

while the side lobe level of the antenna is little varied. Especially, the planar

re�ector has more in�uence on the HPBW of the pattern in elevation than that

in azimuth. However, for a much narrower HPBW in elevation, the distance d1
should be larger since a large e�ective aperture is required. This large distance
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Figure 6.1: Geometry of the entire planar re�ector system and coordinate system.

(a) Side view. (b) Front view.

needs a large planar re�ector to re�ect almost all radiation of the feed. Also it is

likely to cause a critical phase error at the aperture of the re�ector. The reason

of this problem is due to the original drawback of the planar re�ector that the

planar re�ector changes simply the propagation of the rays from the feed in

elevation [Ehr75], [Joh93]. From the above reasons, an o�set parabolic re�ector
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parison of the results with the re�ector (solid line) and without (w/o) the

re�ector (dashed line). (b) Beam scanning measurement.
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Figure 6.3: In�uence of the planar re�ector on E-plane radiation patterns.

is needed to collimate the rays from the feed and avoid the edge scattering by

the corrugated �ares.



6.2 O�set cylindrical parabolic re�ector with

corrugated �ares

In this section, an o�set cylindrical parabolic re�ector antenna is considered in

order to solve the problems of the APWLL antenna. GO is used to calculate

far �elds of the re�ector in elevation. Using the far-�eld calculation, optimal di-

mensions of the re�ector and the corrugated �ares are determined for a desired

HPBW and �rst side lobe level. Also, depending on a desired maximum scan

angle, the unnecessary part of the �ares is removed. The design procedures are

described in the following sections in detail.

6.2.1 Principles of an o�set re�ector

As described previously, an o�set re�ector of collimating the rays of the

APWLL antenna and modifying their phase is necessary for the dimension

reduction of the entire re�ector antenna. For the above purposes, a classical

o�set dual re�ector [Han61], [Joh62], [Sco90] can be used. However, a single

o�set cylindrical parabolic re�ector is more appropriate for the ACC radar due

to its stability in tough environments and its simplicity in terms of design and

fabrication.

An o�set cylindrical parabolic re�ector is often applied to produce pencil

beams by collimating rays from a feed [Sil49], [Lov78], [Kil00]. As shown in

Fig. 6.4, the entire re�ector system consists of a line source, called a focal line

and a cylindrical parabolic re�ector. It is assumed that the line source radiates

a cylindrical wave. From the property of parabola geometry, the length of the

propagating rays which are re�ected by the re�ector is same at the aperture, so

that the phase of the wave becomes identical at the re�ector aperture. There-

fore, the cylindrical wave from the line source is transformed to a plane wave at

the re�ector aperture by the re�ector. Also, since the line source is fed below

the o�set re�ector, the re�ector avoids the scattering of main rays with the line

source, which is a useful advantage of the o�set feed technique [Sil49], [Kra88].

We consider the APWLL antenna in Ch. 5. In azimuth, the complete

APWLL extended to the corrugated �ares produces a plane wave at the �ctive

lens aperture. In elevation, the corrugated �ares result in a cosine �eld distri-

bution in terms of phase and amplitude. In other words, the APWLL antenna

generates a cylindrical wave which can be replaced by a virtual equivalent line

source. Thus, as mentioned above, this cylindrical wave is converted into a

plane wave by an o�set cylindrical parabolic re�ector.
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Figure 6.4: Geometry of an o�set cylindrical parabolic re�ector. (a) Entire re�ector

system and coordinate system. (b) Side view.

In Fig. 6.5, the entire o�set cylindrical parabolic re�ector system is illus-

trated. It is composed of the APWLL, a pair of symmetric corrugated �ares,

and a cylindrical parabolic re�ector. The corrugation can be linear or circular

as illustrated in Figs. 6.5(b) and 6.5(c). Especially, in case of the circular cor-

rugation in Fig. 6.5(b), the circularly-corrugated �ares feed identical cylindrical

waves on the re�ector regardless of the feed positions due to their rotational

symmetry.

From literature [Sil49], it is known that the performance of the cylindrical

parabolic re�ector antenna depends on the fact that the re�ector of the main

beam shaper is in the cylindrical wave cone of the source. In the dual re�ector

system, the �rst small re�ector plays a role in changing a wave from the primary

feed into a cylindrical wave. On the other hand, in this novel re�ector system,

the corrugated �ares are used in order to feed a cylindrical wave on the re�ector,

the main beam shaper. Therefore, the entire re�ector antenna has not only

good performance, but also keeps compact and stable since only the little �ares

will be extended to the APWLL. It should be mentioned that the idea of

using the corrugated �ares and a single o�set cylindrical parabolic re�ector is

presented for the �rst time in this work.

Also, the performance of the entire antenna in elevation is mostly subject to

both the �ares and the re�ector. Therefore, in order to predict the performance

of the entire antenna and design an optimal re�ector, in the following section,

the far �elds of the entire antenna are derived.
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6.2.2 Far-�eld calculation of o�set cylindrical parabolic

re�ector

In Fig. 6.6, the geometry of the o�set cylindrical parabolic re�ector for calculat-

ing far �elds is illustrated. The focal point is located on the x�axis, Fa(F;0;0).
Fe(F + Æx;0;Æz) is a point which is deviated from the focal point to Æx in the

x direction and Æz in the z direction. This is used later to investigate o�-axis

operation such as the calculation of far �eld at a beam scan angle. An arbitrary

point of the parabola is given as Q(x; 0; z). The length and the angle between

the focal point Fa and the point Q are Ra and �, respectively. The di�erential

increment of the angle � is d�. Two angles of �1(< 0) and �2(> 0) determine

the lowest point (x1;z1) and the highest point (x2;z2), respectively. Da is the

projected cylindrical parabolic length and using Eq. (D.3) in appendix D is

given as

Da = z2 � z1 = 2F
� cos(�2)

1� sin(�2)
�

cos(�1)

1� sin(�1)

�
: (6.1)

Eq. (6.1) also shows that if the three variables of �1, �2, and Da are given,

the focal point length F is known, so that a cylindrical parabolic re�ector is

designed.

Practically, if the re�ector is small, the amount of rays which isn't re�ected

by the re�ector, called spillover e�ect, increases. For a lower spillover, that is,

a high e�ciency at least the following two conditions should be ful�lled. First,

the length Da is bisected at the point P . Second, the angle �1 is large enough

to make almost all energy from the �ares re�ected. Usually, the angle �10 dB,

at which the power of the feed radiates 10 dB below from the bore sight of the

feed is taken as �1 [Miz76], [Rus90], [Bro93], [Lee95].

The �rst condition of bisection at the point P results in Da = 2(2F � z1)
and hence z2 is determined by Da and z1 or F and z1 as follows:

z2 = Da + z1 = 4F � z1: (6.2)

Thus, with the �rst condition, a cylindrical parabolic re�ector is �xed by only

two variables �1 and one of both Da and F . The relation of Da and F is

F =
Da

4
�
�
1�

cos(�1)

1� sin(�1)

��1
: (6.3)

6.2.2.1 Aperture �eld of the re�ector

S1(y;�) is the energy distribution per unit angle area in the pattern of the feed

and S2(y;z) is the energy distribution per unit area at the aperture. In the same
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Figure 6.6: The schematic diagram of the o�set cylindrical parabolic re�ector for the

calculation of far �elds.

way as the calculation of the lens aperture �eld in Sec 4.2.2, the energy �ows

through a ray tube at the feed, S1(y;�)dyd� and at the aperture, S2(y;z)dydz

are

S1(y;�)dyd� = jE1(y)j
2jE1(�)j

2dyd� (6.4a)

S2(y;z)dydz = jE2(y)j
2jE2(z)j

2dydz: (6.4b)

Since the energy �ow keeps constant through various cross sections normal to

the tube,

S1(y;�)dyd� = S2(y;z)dydz: (6.5a)

From Eq. (6.4), simplifying Eq. (6.5a) results in

jE1(�)jd� = jE2(z)jdz: (6.5b)



jE1(�)j is a far �eld of the corrugated �ares in elevation and d� is derived in

appendix D. Therefore, the �eld distribution at the aperture jE2(z)j is

jE2(z)j =
1� sin(�)

2F
jE1(�)j: (6.5c)

For instance, the far �eld of the corrugated �ares for a 20Æ HPBW is con-

sidered as jE1(�)j. Figure 6.7(a) shows the far-�eld pattern of the corrugated

�are. The angle �10 dB is 23:4Æ, so that the angle �1 = �23:4Æ. Figure 6.7(b)

shows the �eld distribution at the re�ector aperture. In calculation, the re-

�ector length Da is 9.3�0 and then Eq. (6.3) leads to the focal point length of

F = 6:8�0.

For the purpose of beam scanning, the focal point is moved and is located
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Figure 6.7: (a) Far �eld of the corrugated �ares fabricated for 20Æ HPBW in Ch 5.

(b) Field distribution at the re�ector aperture using Eq. (6.5c).

on the o�-axis. This causes phase errors at the aperture. Therefore, the e�ect

of phase errors should be added to the amplitude term in Eq. (6.5c) in order

to predict far �elds at a beam scan angle. From the new focal point Fe, the

distance between Fe and Q is

Re =

r
(F + Æx �

z2

4F
)2 + (z � Æz)2 (6.6)

where z is given by the angle � in Eq. (D.3) in appendix D. Using Eq. (D.2c),

the total distance between the original focal point Fa and the new focal point

Fe is

re = Ra �Re: (6.7)



Therefore, the complete electric �eld at the aperture including the phase

error is

~E2(y;z) = ẑjE2(y)jjE2(z)je
jk0re (6.8)

where jE2(y)j is given as jEa(y)j in Eq. (4.9).

With the aid of Eqs. (6.6) and (6.7), the phase error caused by focal point

deviation is investigated. In Fig. 6.8, the phase error k0re and the amplitude

in elevation are plotted for two di�erent cases. First, Fig. 6.8(a) is for the

movement in the x direction, Æx = 0:8�0, while Æz = 0. Second, Fig. 6.8(b) is

for the movement in the z direction, Æz = 0:7�0, while Æx = 0.

6.2.2.2 Far-�eld calculation

Far-�eld patterns of the re�ector are derived by the aperture �eld integration

method [Stu81], [Bal97] using the aperture �eld given by Eq. (6.8). By applying

the equivalent theorem on the aperture, only the equivalent electric current ~M

is considered. Therefore,

~M = 2~E2(y;z)� n̂ = 2ŷjE2(y)jjE2(z)je
jk0re (6.9)

where n̂ is the outward unit vector normal to the aperture, so that n̂ = x̂.

Similar to the far-�eld calculation of the lens in appendix B, the far �elds of

the re�ector are

E� = �
jk0e

�jk0r

4�r

Z
y

Z z2�2F

z1�2F

My cos( )e
jk0(y

0 sin(�) sin( )+z0 cos(�))dz0dy0

(6.10a)

E =
jk0e

�jk0r

4�r

Z
y

Z z2�2F

z1�2F

My cos(�) sin( )e
jk0(y

0 sin(�) sin( )+z0 cos(�))dz0dy0

(6.10b)

with

My = 2jE2(y)jjE2(z)je
jk0re : (6.10c)

For the far-�eld pattern in E-plane, let  = 0Æ. Thus,

E� = �
jk0e

�jk0r

4�r

Z
y

Z z2�2F

z1�2F

Mye
jk0z

0 cos(�)dz0dy0 (6.11a)

E = 0: (6.11b)
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Figure 6.8: (a) Plot of phase error and amplitude for Æx = 0:8�0 and Æz = 0. (b) Plot

of phase error and amplitude for Æz = 0:7�0 and Æx = 0.

Using Eq. (6.11), the far-�eld patterns are computed for the three cases in

Figs. 6.7 and 6.8. The patterns are normalized. For Æx = 0 and Æz = 0, the

re�ector has a 6.2Æ HPBW in elevation and a �rst side lobe of about �22 dB.
Thus, the beam factor is obtained as

BFsim:ref = �HPBW �
Da

�0
= 57:66Æ: (6.12)

For Æx = 0:8�0 and Æz = 0, the re�ector has a 9.2Æ HPBW. The �rst side lobe

level is lower than -33 dB. For Æx = 0 and Æz = 0:7�0, the re�ector has a HPBW



of about 5.8Æ. The �rst side lobe level is about -15.5 dB. From the simulation,

it can be found that the deviation in the x direction in�uences mostly a HPBW

of the re�ector whereas the deviation in the z direction in�uences mostly a �rst

side lobe level of the re�ector.
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Figure 6.9: Calculated E-plane far-�eld patterns for the three cases in Figs. 6.7 and

6.8. Solid line is for Æx = 0 and Æz = 0.

6.2.3 Design and fabrication of an o�set cylindrical para-

bolic re�ector for the 76.5GHz ACC radar

6.2.3.1 Determination of the re�ector

In order to design a cylindrical parabolic re�ector, the projected re�ector length

Da and the angle �1 are required as mentioned previously. Additionally, the

width of the re�ector in the y direction is required. As a �rst prototype, a

re�ector of about 5Æ HPBW in elevation and a 8Æ maximum scan angle in

azimuth which satis�es the speci�cation for the 76.5GHz ACC radar in [Sch98]

and [Wie01] is designed.

First, as shown in Eq. (6.12), the length Da is determined by a desired

HPBW. For a HPBW of 5.4Æ, Da = 11�0 is calculated.

Second, to determine the angle �1, the ratio of F and Da is considered. As



described in [Lo60], [Ruz65], [Rus73], and [Kra88], higher ratio of F and Da

improves the tolerance of feed deviation (displacement). However, for higher

ratio, a small j�1j (a large aperture of the corrugated �are) is required (see

Eq. (6.3), so that the �ares become large. By considering the above e�ects,

j�1j is determined to 31Æ, and then the focal point length F is 24:8mm from

Eq. (6.3). As a result, the ratio of F and Da is 0.57.

To design a corrugated �are for �10 dB = j�1j = 31Æ, the design rules for

h=1.9 mm

APWLL

θe=29.5°

ρe=11  mm

Figure 6.10: Side view of the corrugated �ares for the �10 dB=31
Æ. The size of the

corrugations is extremely exaggerated.

corrugated �ares in Sec. 5.1.3 are used. The �are length �e = 11mm and the

�are angle �e = 29:5Æ are selected. For the corrugations, the teeth width is

0.2mm and the period between two teeth is 0.7mm. Figure 6.10 shows the

cross sectional view of the 11mm corrugated �ares. The total number of the

corrugated �ares amounts to 11.

Third, the width of the re�ector wref is determined by considering a

desired maximum scan angle. In Fig. 6.11, the schematic diagram is illustrated

to determine the width. The angle � is a maximum scan angle. Also note

that the unnecessary part of the �are (larger than � = 8Æ) has been removed.

To determine the width, it is assumed that the rays leaving the APWLL are

con�ned to the aperture of the 50mm APWLL, so that no �elds out of the

50mm length exist. Then, the width of the re�ector is

wref = 50 + 2 tan(�) � (2F + s1): (6.13)

As given previously, the desired maximum scan angle is � = 8Æ, s1 = 25mm.

The width of the re�ector wref is determined to 70mm.
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Figure 6.11: The schematic plot of the o�set cylindrical parabolic re�ector for the

determination of the optimal re�ector length wref depending on a desired

maximum scan angle.

6.2.3.2 Fabrication

Figures 6.12(a) and 6.12(b) show the photograph of the linearly-corrugated

�are and that of the circularly-corrugated �are, respectively. They are made

of aluminum. Both of the �ares are machined on a CNC milling machine. The

70mm cylindrical parabolic re�ector is shown in Fig. 6.12(c). The re�ector is

also made of aluminum and machined on the milling machine.

6.2.4 Experimental setup and measurement

In Fig. 6.13, the experimental setup is illustrated. The re�ector is movable so

that the deviation of the re�ector from the focal line in the neighbor of the fo-

cal line is corrected. For the beam scan measurement, the feed horn connected

with the mixer is rotated while both of the re�ector and the APWLL antenna

are �xed. In measurement, the 50mm APWLL with the square lattice and

square metal posts in Fig. 5.18 is used. The feed horn of 3:6mm� 1:29mm in

Fig. 5.20 is used.

Figure 6.14 shows measured and simulated far-�eld patterns of the APWLL

antenna without the re�ector in E-plane. The solid line shows the pattern
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43.6 mm

43.9 mm

(c)

Figure 6.12: (a) Photograph of the linearly-corrugated �are. (b) Photograph of the

circularly-corrugated �are. (c) Photograph of the 70mm cylindrical

parabolic re�ector.

for the circularly-corrugated �are. It has 29Æ HPBW and �10 dB=31
Æ. For

the linearly-corrugated �ares (marked-dashed-dotted line), the HPBW is 28:4Æ

and �10 dB is 34:2Æ. By comparing the simulation and the measurement, both

of them are in good agreement although the HPBWs of two patterns are a bit

higher.

In Fig. 6.15, measured H-plane far-�eld patterns of the entire re�ector an-

tenna for the circularly-corrugated �ares are displayed. The antenna is meas-

ured at two di�erent scan angles, 0Æ and 8Æ. It is seen that the pattern at 0Æ
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Figure 6.13: (a) Photograph of the measurement setup. (b) Photograph of the meas-

urement setup without the upper plate of the APWLL.

has 2 dB higher gain than that at 8Æ. Both of the patterns have 4.75Æ HPBW

and about -18.5 dB �rst side lobe. In other words, the deviation of the focal

point have little in�uences on the H-plane pattern. The cross polarization at

scan angle 0Æ is lower than -37 dB.

In Fig.6.16, measured and simulated E-plane far-�eld patterns are dis-

played. The calculation (dotted line) shows 5:4Æ HPBW whereas the measured

(solid line) shows 4:8Æ HPBW. Therefore, the beam factor is

BFmea:ref = �HPBW �
Da

�0
= 53Æ: (6.14)

In terms of side lobe level, the calculation is about 2.5 dB lower than the meas-

urement. The minimal di�erences of HPBW and side lobe level is due to the

usage of the approximate far �eld of the �ares. The measured pattern is also

displayed in expanded scale. Spillover e�ect is found at about 50Æ. The antenna

gain of 30:3 dBi is measured.

In Fig. 6.17, the in�uence of focal line movement on E-plane radiation

patterns is investigated. In order to compare each pattern, they are normalized

whereas the gain of the pattern at scan angle 0Æ is 2 dB higher than that at 8Æ
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circularly-corrugated �ares for scan angles 0Æ and 8Æ.
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Figure 6.16: Measured and simulated E-plane far-�eld patterns with the re�ector and

with the circularly-corrugated �ares. Cross polarization is measured at

scan angle 0Æ. The measured pattern is also plotted in expanded scale.

as described previously. The gain of the pattern at scan angle 0Æ is also 0.4 dB

higher than that for Æx = 0 and Æz = �0. In terms of the side lobe levels, the

behavior is clearly di�erent. The movement of focal point in the z direction

leads to higher side lobe level (see the marked-dashed-dotted line). This result

is also shown in Fig. 6.9. However, compared with the pattern of scan angle

8Æ, the side lobe levels are nearly the same except but the 2 dB gain loss.

In order to compare the performance between the circularly-corrugated and

the linearly-corrugated �are, the entire antenna equipped with the linearly-

corrugated �are in Fig. 6.12(a) is measured. The measurement is plotted in

Fig. 6.18. The simulated pattern is the same that in Fig. 6.16. The meas-

ured pattern points out 4:8Æ HPBW and -18.5 dB �rst side lobe level. The

measurement shows that the shape of the corrugation has little e�ect on the

performance of the entire antenna.

Conclusively, it is shown that using of a cylindrical parabolic re�ector in-

stead of corrugated �ares, high resoltuion in elevation is achieved with the

complete antenna still compact. Also, the usage of a new type of the circularly-

corrugated �ares is presented and its good ability is shown. The design pro-
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Figure 6.17: In�uence of the displacement of the focal point on E-plane far-�eld pat-

terns with the re�ector and with the circularly-corrugated �ares. The

patterns are also plotted in expanded scale.

cedure of the complete antenna is given and very helpful for the design of

the general parallel-plate Luneburg lens antenna with an o�set re�ector. In

Fig. 6.19, the complete o�set cylindrical parabolic re�ector antenna for the

76.5GHz ACC radar is displayed.
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Figure 6.18: Measured and simulated E-plane far-�eld patterns with the re�ector and

with the linearly-corrugated �ares. Cross polarization is measured at

scan angle 0Æ. The measured pattern is also plotted in expanded scale.

Figure 6.19: The entire o�set cylindrical parabolic re�ector antenna for the 76.5GHz

ACC radar.



Chapter 7

Conclusion

Two new antennas using Luneburg lenses were presented for an adaptive cruise

control (ACC) radar at 76.5GHz. First, an asymmetric parallel-plate wave-

guide Luneburg lens (APWLL) antenna using two metallic PBG structures of

a metal post structure and a corrugated surface was presented. Second, a single

o�set cylindrical parabolic re�ector antenna fed by an APWLL antenna was

presented.

The major contributions of this work can be summarized as follows:

First, two di�erent properties of PBG structures of guiding and suppress-

ing surface waves were studied. To explain the properties, two metallic PBG

structures of a metal post structure and a corrugated surface in a parallel-plate

waveguide were analyzed using the transmission line theory and the transverse

resonance method. The metal post structure was shown to be isotropic but

the corrugated surface is anisotropic while both structures are able to support

arbitrary surface impedance. For the isotropy of the metal post structure, new

lattices and shapes of metal post were found.

Second, using the two metallic PBG structures, a new APWLL antenna for

automotive radar and communication applications was presented. The antenna

is composed of an APWLL, rotationally symmetric corrugated �ares, and a

primary feed. The far �elds of the antenna were derived by GO and the aperture

�eld integration method. The design procedures of the antenna were described

in Ch. 4.

With the aid of HFSS, the performances of the metal post structure for

di�erent lattices and metal post shapes were evaluated and veri�ed at 76.5GHz.

It was found that the APWLL with a hexagonal lattice and circular metal posts
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has the best performance.

By measurement, the design rules and the simulation results were veri�ed

at 76.5GHz in Ch. 5. It was also shown that the APWLL antenna has really

a wide scan angle, low side lobe levels, and relative broad band behavior. The

most important advantages is that the APWLL antenna has nearly same per-

formance, regardless of the feed position, that is, the antenna is used as a

multiple beam antenna (MBA). Since the metallic PBG structures, namely the

metallic arti�cial dielectrics were used, the complete antenna was capable of

being made of metal. This metal fabrication makes the antenna not only dur-

able in a car but also producible in low cost with the aid of proper fabrication

method such as a precise metal cast [Woe98].

Last, using a single o�set cylindrical parabolic re�ector and an APWLL

antenna, a prototype antenna for the 76.5GHz ACC radar was made and

measured in Ch. 6. The measurements showed that the antenna has a rel-

atively wide scan angle. Also, using the re�ector and the corrugated �ares, the

total dimension of the antenna was reduced and the e�ciency of the antenna

was enhanced, especially compared with the case of the usage of the large cor-

rugated �ares. Thus, it was shown that the antenna was able to satisfy the

hard requirements for the 76.5GHz ACC radar. It should be pointed out that

the usage of a single o�set cylindrical parabolic re�ector for a parallel-plate

waveguide Luneburg lens is reported for the �rst time.

Conclusively, the two antennas are excellent candidates for not only the

76.5GHz ACC radar but also other automotive radar applications, especially,

due to the low cost production and the properties of multiple beam and a wide

scan angle. Furthermore, for the APWLL antenna, the useful properties of

the multiple beam and a wide scan angle are applied for point-to-multipoint

communications.



Appendix A

tanh(x)

Here a hyperbolic tangent function is derived from a tangent function to cal-

culate the surface impedance in Ch. 3.

Let x = kx1(h� t) in Eq. (3.9),

tan(kx1(h� t)) = tan(x) =
sinx

cosx
= �j

ejx � e�jx

ejx + e�jx
: (A.1)

Using kx1 = jk0
p
n2 � 1 given in Eq. (3.11), x = jk0

p
n2 � 1(h � t) = jjxj.

Thus

tan(x) = �j
e�jxj � ejxj

e�jxj + ejxj
= j tanh(jxj): (A.2)

As a result,

tan(kx1(h� t)) = j tanh(k0
p
n2 � 1(h� t)): (A.3)

As an example, n0 =
p
2� r02 in Eq. (4.1) is put in the hyperbolic tangent

function. The result is

tanh(jxj) = tanh
�2�
�0

p
1� r02(h� t)

�
: (A.4)

The behavior of the hyperbolic tangent function is plotted for r0 = 0 in Fig. A.1.
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Appendix B

Far-�eld calculation of a

parallel-plate Luneburg lens

Figure B.1: Geometry of a parallel-plate Luneburg lens for the far-�eld calculation.

In Fig. B.1, the real aperture of the lens is displayed. Now using the aperture

�elds given in Eqs. (4.11a) and (4.11b), the equivalent magnetic and electric

currents on the aperture, ~J and ~M are obtained. They are

~J = n̂� ~Ha = �
1

�0
cos(�)Ea(x;y)x̂ (B.1a)

~M = �n̂� ~Ea = �Ea(x;y)(cos(�)ŷ + sin(�)ẑ): (B.1b)
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The vector n̂ is the outward unit vector normal to the aperture. It is given as

n̂ = � sin(�)ŷ + cos(�)ẑ:

With Eq. (B.1), vector magnetic and electric potentials, ~A and ~F , are given.

~A =
�0r0e

�jk0R

4�R

Z x0

2

�
x0

2

Z �

2

�
�

2
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"0�0r0e

�jk0R

4�R

Z x0

2

�
x0

2

Z �
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Z �
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where

~� = xx̂� r0 sin(�)ŷ + r0 cos(�)ẑ (B.3a)

êr = sin(�) cos( )x̂+ sin(�) sin( )ŷ + cos(�)ẑ (B.3b)

êr � ~� = x sin(�) cos( )� r0 sin(�) � sin(�) sin( ) + r0 cos(�) � cos(�):
(B.3c)

Since ~A and ~F are known, the far �elds can be calculated [Bal97]

E� = �j!A� � j!�0F (B.4a)

E = �j!A + j!�0F �: (B.4b)

Thus, using the results in Eq. (B.2), the far �elds are obtained as
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jr0k0e

�jk0R
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2

�
x0

2

Z �

2

�
�

2
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� sin(�) sin(�))ejk0 êr�~�dxd� (B.5b)

H� = �
E 

�0
(B.5c)

H =
E�
�0
: (B.5d)



Appendix C

Far-�eld calculation of

corrugated �ares

x´

y´ z´

a´

ρe

θe

2+

a´
2-

Figure C.1: Geometry of the corrugated �ares for the aperture �eld calculation.

Referring to [Men76] and [Bal97], the aperture �eld is given as follows:

~Ea(x
0; y0) = x̂Eax(x

0; y0) = E0 cos
�x0

a0
Eax(y

0)ejk0(�e�
p
�2
e
+x

02)x̂

(C.1a)

~Ha(x
0; y0) =

1

�0
Eax(x

0; y0)ŷ (C.1b)
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where Eax(y
0) is given by Eq. (4.9).

C.1 Far-�eld calculation

Now, the far �eld is derived using the aperture �eld with the aid of the aperture

�eld integration method [Stu81]. That is,

E� = jk0
e�jk0R

2�R
(P x cos( ) + P y sin( )) (C.2a)

E = jk0
e�jk0R

2�R
cos(�)(P y cos( )� P x sin( )) (C.2b)

where

P x =

Z
y0

Z a
0

2

�
a0

2

Eax(x
0;y0)ejk0(x

0ue+y
0uh)dx0dy0 (C.2c)

P y =

Z
y0

Z a
0

2

�
a0

2

Eay(x
0;y0)ejk0(x

0ue+y
0uh)dx0dy0 (C.2d)

Eax(x
0; y0) = cos

�x0

a0
Eax(y

0)ejk0(�e�
p
�2
e
+x

02) (C.2e)

Eay(x
0; y0) = 0 (C.2f)

ue = k0 sin(�) cos( ); uh = k0 sin(�) sin( ): (C.2g)

With �e � a0, k0(�e �
p
�2e + x

02) approximates to
�
k0

x
0
2

2�e

�
. Thus,
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2

2�e � ejk0uedx0

| {z }
A

�
Z
y0
Eax(y

0)ejk0uhdy0| {z }
B

: (C.3)

To obtain P x, the entire integral is divided into two parts. First,
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where

t2 =

s
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2
�
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k
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(C.4d)

s02 =

s
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��e
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�
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2
+
�e

k0
(
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a0
� ue)

�
: (C.4e)

In Eq. (C.4a), Fresnel integrals are contained. Therefore, Eq. (C.4a) is ex-

pressed by

A =
1

2

r
��e

k0

�
e
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where

C(v) � jS(v) =
Z v

0

e�j
�

2
u2du =

Z v

0

cos
��
2
u2
�
du� j

Z v

0

sin
��
2
u2
�
du:

(C.5b)

As a result, from Eqs. (C.2), (C.3), and (C.5a), the E-plane radiation

pattern is simply obtained by letting  = 0Æ. That is,

E = 0 (C.6a)

E� = jk0
e�jk0R

2�R
E0A �B
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 =0Æ

(C.6b)
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B =

Z
y0
Eax(y

0)dy0: (C.6d)



Note that for the E-plane radiation pattern, B is independent of the angle �

since Eax(y
0) has no component of the angle �.

C.2 Approximation of the Fresnel integrals

The approximation of the Fresnel integrals [Abr72] is

C(v) =

�
1
2
+A(v) sin

�
�
2
v2
�
�B(v) cos

�
�
2
v2
�

if v � 0

�C(�v) if v < 0
(C.7a)
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1
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�A(v) cos

�
�
2
v2
�
�B(v) cos

�
�
2
v2
�

if v � 0

�S(�v) if v < 0
(C.7b)

where

A(v) =
1 + 0:926v

2 + 1:792v + 3:104v2
(C.7c)

B(v) =
1

2 + 4:142v + 3:492v2 + 6:67v3
: (C.7d)



Appendix D

Derivation of the relation

between dz and d�

Using the parabolic equation, x2 = 4Fz and Fig. 6.6, the y and z components

of the point Q are

x = F + 2Ra sin(�) (D.1a)

z = 2
p
Fx = 2

p
F (F +Ra sin(�)): (D.1b)

Thus, the distance Ra is

R2
a = (x� F )2 + z2 = (Ra sin(�))

2 + 4F 2 + 4FRa sin(�): (D.2a)

Simplifying the above equation results in

R2
a cos

2(�)� 4RaF sin(�)� 4F 2 = 0: (D.2b)

By solving Eq. (D.2b) for Ra,

Ra =
2F

1� sin(�)
: (D.2c)

From Eq. (D.2c), Eq. (D.1b) is

z = 2F
cos(�)

1� sin(�)
: (D.3)

Thus, dz is obtained as

dz =
2F

1� sin(�)
d�: (D.4)
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