4,905 research outputs found
The impact of anti-inflammatory agents on the outcome of patients with colorectal cancer
Although there is increasing appreciation of the role of the host inflammatory response in determining outcome in patients in colorectal cancer, there has been little concerted effort to favourably manipulate cancer-associated inflammation, either alone or in combination with current oncological treatment. Epidemiological and cardiovascular disease studies have identified aspirin, other nonsteroidal anti-inflammatory drugs and statins as potential chemotherapeutic agents which may manipulate the host inflammatory response to the benefit of the patient with cancer. Similarly, evidence of a chemotherapeutic effect of histamine-2 receptor antagonists, again mediated by an immunomodulatory effect, has previously led to increased interest in their use in gastrointestinal cancer. Extensive pre-clinical data and a limited number of clinical investigations have proposed a direct effect of these agents on tumour biology, with an anti-tumour effect on several of the hallmarks of cancer, including proliferative capacity, evasion from apoptosis and cell cycle regulation, and invasive capability of tumour cells. Furthermore, clinical evidence has suggested a pertinent role in down-regulating the systemic inflammatory response whilst favourably influencing the local inflammatory response within the tumour microenvironment. Despite such compelling results, the clinical applicability of nonsteroidal anti-inflammatory drugs, statins and histamine-2 receptor antagonists has not been fully realised, particularly in patients identified at high risk on the basis of inflammatory parameters. In the present review, we examine the potential role that these agents may play in improving survival and reducing recurrence in patients with potentially curative colorectal cancer, and in particular focus on their effects on the local and systemic inflammatory response
In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV
Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.110Ysciescopu
Kaluza-Klein Formalism of General Spacetimes
I describe the Kaluza-Klein approach to general relativity of 4-dimensional
spacetimes. This approach is based on the (2,2)-fibration of a generic
4-dimensional spacetime, which is viewed as a local product of a
(1+1)-dimensional base manifold and a 2-dimensional fibre space. It is shown
that the metric coefficients can be decomposed into sets of fields, which
transform as a tensor field, gauge fields, and scalar fields with respect to
the infinite dimensional group of the diffeomorphisms of the 2-dimensional
fibre space. I discuss a few applications of this formalism.Comment: RevTex, no figure
Outcome in colorectal cancer – tumour, stroma and so much more
No abstract available
From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator.
Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as "repressilator" in Escherichia coli and controlling it using optogenetics, creating the "optoscillator". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations
Long-term starin monitoring data of jacket-type offshore structure for tidal current power generation under severe tidal current environments
Structural strain responses of the jacket-type Uldolmok tidal current power plant structure under severe\ud
tidal environments were analyzed using long-term measurement data from construction to normal operation. From the\ud
measured data during construction, it was found that there were significant changes in strain responses at the steps of\ud
jacket lifting, weight-block loading, pile ejection and insertion. Strains due to permanent and tidal current loads were\ud
analyzed during removal work on one among six jacket legs, and it was found that the strains due to permanent load\ud
were much significantly changed after removal of on jacket leg. From the measurement data during normal operation, it\ud
was observed that strain responses were obviously fluctuated with M2 and M4 tidal periods and also with relatively\ud
short period of about 11 min due to the peculiar tidal characteristics in the Uldolmok strait
Evaluation of fermented whole crop wheat and barley feeding on growth performance, nutrient digestibility, faecal volatile fatty acid emission, blood constituents, and faecal microbiota in growing pigs
This study was conducted to determine the effects of feeding diets with fermented whole crop wheat (FWW) and fermented whole crop barley (FWB) on growth performance, nutrient digestibility, blood constituents, faecal volatile fatty acid (VFA) emission and faecal microbiota in growing pigs. A total of 200 growing pigs were randomly allotted to five treatments with eight replicates per treatment and five pigs per replicate. Dietary treatments consisted of i) CON (basal diet), ii) 0.5% FWW (CON + 0.5% fermented whole crop wheat), iii) 1.0% FWW (CON + 1.0% fermented whole crop wheat), iv) 0.5% FWB (CON + 0.5% fermented whole crop barley), and v) 1.0% FWB (CON + 1.0% fermented whole crop barley). The digestibility of total dietary fibre was significantly higher in pigs fed FWW diets. The faecal emissions of VFA of pigs fed the fermented treatments was increased significantly compared with CON. Concentrations of cortisol and triglyceride in blood of pigs fed 1.0% FWW were significantly lower than pigs fed CON diets. The pigs fed 1.0% FWB diets had a significantly decreased level of total cholesterol in blood compared with CON. In conclusion, the current results indicated that diets supplemented with FWW and FWB could increase faecal VFA emission and reduce concentration of triglyceride and cortisol, while 0.5% and 1.0% FWW had no negative effects on growth performance, and could increase digestibility of dietary fibre in growing pigs.Keywords: Dietary fibre, faecal short-chain fatty acid emissions, fermented feed, serum parameter, swin
Performance of RF MEMS switches at low temperatures
The actuation voltage of microelectromechanical system (MEMS) \ud
metal switches was investigated at temperatures ranging from 10 to 290 K. The investigation shows a 50% increase in the actuation voltage at low temperature. A comparison has been made using a published model and showed similar increment of actuation voltage at low temperature
Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity
Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (A(Platelet)) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index I-A.T based on A(Platelet) and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (mu) can be estimated by measuring W. Biophysical parameters (IA.T, mu) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions.119Ysciescopu
- …