2,013 research outputs found

    Electrical Investigation of the Oblique Hanle Effect in Ferromagnet/Oxide/Semiconductor Contacts

    Full text link
    We have investigated the electrical Hanle effect with magnetic fields applied at an oblique angle ({\theta}) to the spin direction (the oblique Hanle effect, OHE) in CoFe/MgO/semiconductor (SC) contacts by employing a three-terminal measurement scheme. The electrical oblique Hanle signals obtained in CoFe/MgO/Si and CoFe/MgO/Ge contacts show clearly different line shapes depending on the spin lifetime of the host SC. Notably, at moderate magnetic fields, the asymptotic values of the oblique Hanle signals (in both contacts) are consistently reduced by a factor of cos^2({\theta}) irrespective of the bias current and temperature. These results are in good agreement with predictions of the spin precession and relaxation model for the electrical oblique Hanle effect. At high magnetic fields where the magnetization of CoFe is significantly tilted from the film plane to the magnetic field direction, we find that the observed angular dependence of voltage signals in the CoFe/MgO/Si and CoFe/MgO/Ge contacts are well explained by the OHE, considering the misalignment angle between the external magnetic field and the magnetization of CoFe.Comment: 19 pages, 8 figure

    Mechanism of Benzofuroindole-induced Potentiation of BKCa channel

    Get PDF

    PRANDTL-3c Operations and Flight Testing

    Get PDF
    This student poster describes their experiences during the current intern period

    Optimal Policy Combinations of Abatement Subsidy and Pollution Tax in Vertical Oligopolies

    Get PDF
    AbstractThis article investigates environmental regulations on eco-industry in vertical oligopolies, in which the upstream industry produces abatement goods reducing pollutants and the downstream industry produces consumption goods emitting pollutants. We devise the optimal combination of appropriate policy instruments and show that an optimal pollution tax should be used for the negative externality and output restrictions in final production, and an optimal abatement subsidy should incorporate the effect of upstream market restrictions on abatement activity. We also examine the welfare effect of the subsidy policy on the abatement technology in tax/subsidy combination

    Putative cell adhesion membrane protein Vstm5 regulates neuronal morphology and migration in the central nervous system

    Get PDF
    During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia. Vstm5 also regulates neuronal morphology by promoting dendritic protrusions that later develop into dendritic spines. Using electroporationin utero, we found that Vstm5 overexpression delayed neuronal migration and induced multiple branches in leading processes during corticogenesis. These results indicate that Vstm5 is a new cell-adhesion-like molecule and is critically involved in synaptogenesis and corticogenesis by promoting neuronal membrane dynamics.SIGNIFICANCE STATEMENTNeuronal migration and morphogenesis play critical roles in brain development and function. In this study, we demonstrate for the first time that V-set and transmembrane domain-containing protein 5 (Vstm5), a putative cell adhesion membrane protein, modulates both the position and complexity of central neurons by altering their membrane morphology and dynamics. Vstm5 is also one of the target genes responsible for variations in patient responses to treatments for major depressive disorder. Our results provide the first evidence that Vstm5 is a novel factor involved in the modulation of the neuronal membrane and a critical element in normal neural circuit formation during mammalian brain development.</jats:p
    corecore