728 research outputs found

    The evolutionary state of the southern dense core Cha-MMS1

    Get PDF
    Aims: Our goal is to set constraints on the evolutionary state of the dense core Cha-MMS1 in the Chamaeleon I molecular cloud. Methods: We analyze molecular line observations carried out with the new submillimeter telescope APEX. We look for outflow signatures around the dense core and probe its chemical structure, which we compare to predictions of models of gas-phase chemistry. We also use the public database of the Spitzer Space Telescope (SST) to compare Cha-MMS1 with the two Class 0 protostars IRAM 04191 and L1521F, which are at the same distance. Results: We measure a large deuterium fractionation for N2H+ (11 +/- 3 %), intermediate between the prestellar core L1544 and the very young Class 0 protostar L1521F. It is larger than for HCO+ (2.5 +/- 0.9 %), which is probably the result of depletion removing HCO+ from the high-density inner region. Our CO(3-2) map reveals the presence of a bipolar outflow driven by the Class I protostar Ced 110 IRS 4 but we do not find evidence for an outflow powered by Cha-MMS1. We also report the detection of Cha-MMS1 at 24, 70 and 160 microns by the instrument MIPS of the SST, at a level nearly an order of magnitude lower than IRAM 04191 and L1521F. Conclusions: Cha-MMS1 appears to have already formed a compact object, either the first hydrostatic core at the very end of the prestellar phase, or an extremely young protostar that has not yet powered any outflow, at the very beginning of the Class 0 accretion phase.Comment: Accepted by Astronomy & Astrophysics as a letter, to appear in the special issue on the APEX first result

    Karst geomorphology of the “Canale di Pirro” polje, Apulia (Southern Italy).

    Get PDF
    In karst environment, a geomorphological map is a powerful instrument, which play a crucial role in understanding earth surface processes and landscape evolution. Furthermore, it could be very useful for speleological perspectives, natural resources exploitation and geo-hazards management (flood, sinkhole, subsidence, etc.), providing useful information that enhance the knowledge of the territory. In this work, we present a geomorphological map of the polje of “Canale di Pirro”, sited in the central part of Apulia Region, in Southern Italy, among the most interesting karst lands in the Mediterranean area. The map covers150km2withanelevationrangeof100-450ma.s.l.Thisareaisoneofthemostremarkablekarstlandforms in the region, characterized underground by a very interesting system of caves, that reaches the water table at a depth of -264 meters. The karst system, known as “Inghiottitoio di Masseria Rotolo”, following scuba-diving exploration below the watertable, has become with a depth of 324m, the deepest known cave in Apulia. The polje is bounded on both sides by tectonically-controlled ridges, showing an overall length of some 12 km. In ancient maps, dating back to the 16th century, the area is represented as crossed by a long river, called Cana. The map obtained derives from the integration of interpretation of aerial photographs, analysis of a digital elevation model and field surveys in order to obtain a correct distribution of landforms and fluvial processes, such as different varieties of karst depressions, conical hills, erosional gullies, alluvial fans and tectonic structures. It provides relevant information about the surface drainage processes, and for understanding, among other things, the groundwater circulation and the related recharge processes. This geomorphological map is part of a wider project, that combined geological, hydrogeological research and chemical analyses of the groundwater. It provides support to the ongoing studies of this part of Apulia region aimedto betterunderstand thegeological processes that originatedthe polje and its later evolution, and the related underground cave system. Further, it might also suggest possible improvements in land management and in the future choice of useful tools for the control of the quality and quantity of karst groundwater

    An integrated approach to elaborate 3-D geological and geotechnical models: a case study from the Daunia Sub-Apennine (Apulia, southern Italy).

    Get PDF
    In the Daunia Sub-Apennine (Apulia, southern Italy) slope instability processes due to rainfalls and earthquakes are widespread and cause significant damage to buildings and other structures, and, in some cases, loss of life. A detailed slope stability assessment requires information on the predisposing and triggering factors, and a good knowledge of the geological and environmental conditions as well. As concerns seismic-induced landslides, conventional methods used for slope stability analysis can be divided in: i) force-based pseudo-static methods, ii) displacement-based methods, and iii) stress-strain methods. Detailed representations of geological and geotechnical units as well as static and dynamic geotechnical characterization of materials have to be considered for the correct choice of the method for slope stability analysis, since these are fundamental for slope behaviour prediction and modelling. The purpose of this paper was to present a methodological approach for elaborating detailed 3-D geological and geotechnical models for areas very heterogeneous in terms of geological and soil properties. In the southern portion of the eastern Daunia Sub-Apennine, the outermost formations of the chain domain crop out. These are represented by the Cretaceous-Miocene and Pliocene wedge-top basin units, followed upwards, in the easternmost portion, by the Plio-Pleistocene foredeep units and by Quaternary filling deposits. A high susceptibility to slope failures for the area is testified by the large number of slope movements consisting in mud flows, roto-translational and composite landslides, and soil slips. Field variability of the slope movements from site to site for mechanisms, velocity, depth of rupture surfaces and volume of materials involved is due to the presence of structurally complex formations, characterised by very poor mechanical properties and high variability of their lithological and structural features. The construction of geological and geotechnical models able to represent realistic information is conditioned by the efficacy of the methods used for assessing the spatial lithofacies distribution and parametrization. The case study of Deliceto is here presented, where the 3-D geological model was built based on the results of stratigraphic correlations between core logs and 2-D geological sections. In-situ surveys were performed by means of classical geological and geomorphological methods, and continuous coring boreholes. Silty-clayey sandstone materials (Conglomerates and Sandstones of Castello Schiavo) crop out along the slopes and rest on clayey silts and marls of turbidite origin (Flysch di Faeto). The Flysch di Faeto Fm. is a structurally complex geological unit which consists of three main lithofacies: 1) silty clays; 2) silty marly clays 3) marls and shales. A series of geotechnical laboratory tests, carried out in accordance with international standards for the static and dynamic characterization of materials, made it possible to obtain a detailed 3-D geotechnical model. In particular, resonant column (RC), cyclic torsional shear (CTS) and standard and cyclic triaxial (TXC) tests were performed on the silty clayey geotechnical unit of the Flysch di Faeto Fm., because it is highly susceptible to geotechnical fatigue resulting from cyclic stresses. The results of the laboratory tests confirmed a variable post-cyclic degradation in the range 40-80% and 12-36%, respectively for the secant shear modulus (G) and the undrained cohesion (cu) associated with an increase between 2.92% and 19.90% for the damping ratio (D), demonstrating the heterogeneity of the material in terms of geological and geotechnical characteristics

    Evaluation of InfraRed Thermography Supported by UAV and Field Surveys for Rock Mass Characterization in Complex Settings

    Get PDF
    The InfraRed Thermography (IRT) technique is gaining increasing popularity in the geo-sciences. Although several studies on the use of this technique for rock mass characterization were reported in the literature, its applicability is challenging in complex environments, characterized by poor accessibility, lithological heterogeneity, karst features and disturbances, such as vegetation and human activities. This paper reports the results of specific tests carried out to explore the application of IRT methods, supported by UAV surveys, for rock mass characterization in complex conditions. In detail, a 24-h monitoring was performed on an appropriate case study to assess which type of information can be collected and what issues can be expected. The results of the thermograms were compared with data reported in the literature and discussed. A novel method to detect correlations between the temperature profiles at the air-rock interfaces and the rock mass properties is presented. The main advantages, limitations and suggestions in order to take full advantage of the IRT technique in complex conditions are reported in the final section

    Comparison of remote sensing techniques for geostructural analysis and cliff monitoring in coastal areas of high tourist attraction: the case study of Polignano a Mare (Southern Italy)

    Get PDF
    Rock slope failures in urban areas may represent a serious hazard for human life, as well as private and public property, even on the occasion of sporadic episodes. Prevention and mitigation measures indispensably require a proper rock mass characterization, which is often achieved by means of time-consuming, costly and dangerous field surveys. In the last decades, remote sensing devices such as high-resolution digital cameras, laser scanners and drones have been widely used as supplementary techniques for rock slope analysis and monitoring, especially in poorly accessible areas, or in sites of large extension. Although several methods for rock mass characterization by means of remote sensing techniques have been reported in specific studies, there are very few contributions that focused on comparing the different methods in an attempt to establish their advantages and limitations. With this study, we performed digital photogrammetry, Terrestrial Laser Scanning and Unmanned Aerial Vehicle surveys on a cliff located in a popular tourist attraction site, characterized by complex geological and geomorphological settings, as well as by disturbance elements such as vegetation and human activities. For each point cloud, we applied geostructural analysis by means of semi-automatic methods, and then compared multi-temporal acquisitions for cliff monitoring. By quantitative comparison of the results and validation by means of conventional geostructural field surveys, the pros and cons of each method were outlined in attempt to depict the conditions and goals the different techniques seem to be more suitable fo

    2D quantitative analysis of fractures from high-resolution photos for the geomechanical characterization of rock masses

    Get PDF
    The identification of discontinuity sets and their properties is among the key factors for the geomechanical characterization of rock masses, which is fundamental for performing stability analyses, and for planning prevention and mitigation measures as well. In practice, discontinuity data are collected throughout difficult and time-consuming field surveys, especially when dealing with areas of wide extension, difficult accessibility, covered by dense vegetation, or with adverse weather conditions. Consequently, even experienced operators may introduce sampling errors or misinterpretations, leading to biased geomechanical models for the investigated rock mass. In the last decades, new remote techniques such as photogrammetry, Light Detection and Ranging (LiDAR), Unmanned Aerial Vehicle (UAV) and InfraRed Thermography (IRT) have been introduced to overcome the limits of conventional surveys. We propose here a new tool for extracting information on the fracture pattern in rock masses, based on remote sensing methods, with particular reference to the analysis of high-resolution georeferenced photos. The first step consists in applying the Structure from Motion (SfM) technique on photos acquired by means of digital cameras and UAV techniques. Once aligned and georeferenced, the orthophotos are exported in a GIS software, to draw the fracture traces at an appropriate scale. We developed a MATLAB routine to extract information on the geostructural setting of rock masses by performing a quantitative 2D analysis of the fracture traces, based on formulas reported in the literature. The code was written by testing few experimental and simple traces and was successively validated on an orthophoto from a real case study. Currently, the script plots the fracture traces as polylines and calculates their orientation (strike) and length. Subsequently, it detects the main discontinuity sets by fitting an experimental composite Gaussian curve on histograms showing the number of discontinuities according to their orientation, and splitting the curve in simpler Gaussian curves, with peaks corresponding to the main discontinuity sets. Then, for each set, a linear scanline intersecting the highest number of traces is plotted, and the apparent and real spacing are calculated. In a second step, a grid of circular scanlines covering the whole area where the traces are located is plotted, and the mean trace intensity, trace density and trace length estimators are calculated. It is expected to test the presented tools on other case studies, in order to optimize them and calculate additional metrics, such as persistence and block sizes, useful to the geomechanical characterization of rock masses. As a future perspective, a similar approach could be investigated for 3D analyses from point clouds

    Influence of LV Neutral Grounding on Global Earthing Systems

    Get PDF
    International Standards define a Global Earthing System as an earthing net created interconnecting local Earthing Systems (generally through the shield of MV cables and/or bare buried conductors). In Italy the Regulatory Authority for Electricity and Gas requires Distributors to guarantee the electrical continuity of LV neutral conductor. This requirement has led to the standard practice of realizing “reinforcement groundings” along the LV neutral conductor path and at users’ delivery cabinet. Moreover, in urban high load scenarios (prime candidates to be part of a Global Earthing System), it is common that LV distribution scheme creates, trough neutral conductors, an effective connection between grounding systems of MV/LV substations, modifying Global Earthing System consistency. Aim of this paper is to evaluate the effect, in terms of electrical safety, of the above mentioned LV neutral distribution scheme when an MV-side fault to ground occurs. At this purpose simulations are carried out on a realistic urban test case and suitable evaluation indexes are proposed

    A Practical Method to Test the Safety of HV/MV Substation Grounding System

    Get PDF
    The adequacy of a Grounding System (GS) to the safety conditions has to be periodically tested by measurements. The test methods and techniques used to verify the electrical characteristics of the GS include the measurements of step and touch voltages. The goal of the test is to verify that touch voltage and step voltage remain below a safe value in all the zones of the installation. The measurements can present some operational difficulties. The purpose of this paper is to present the procedure, step-by-step, of a practical method of measuring touch/step voltages in grounding systems located in urban or industrial areas with reduced accessibility. The suggested method uses auxiliary current electrodes located at short distances. This paper demonstrates by test measurements done in a real case that the method provides conservative results

    DETERMINAZIONE INNOVATIVA DEL ROTENONE NEGLI OLI DI OLIVA DA AGRICOLTURA BIOLOGICA MEDIANTE SPETTROMETRIA DI MASSA TANDEM

    Get PDF
    Il rotenone, pesticida naturale utilizzato in agricoltura biologica su una grande varietà di colture, è stato determinato quantitativamente mediante Atmosheric Pressure Chemical Ionisation Spettrometria di Massa Tandem (APCI MS/MS) nelle olive e negli oli di oliva ottenuti dopo trattamento in una prova di campo che ha interessato la cv Carolea in Calabria. La tecnica analitica ha previsto la realizzazione di esperimenti “Multiple Reaction Monitoring” (MRM) utilizzando uno standard interno ottenuto per sintesi. Le quantità rilevate sono comprese tra 9 mg/Kg di olio dopo 1 giorno dal trattamento e 0.15 mg/Kg di olio dopo 1 mese circa dal trattamento. Quest’ultimo valore è molto più elevato dei 40 µg/Kg permessi dalla legislazione italiana
    corecore