9 research outputs found

    C-1 Substituted isoquinolines potentiate the antimycobacterial activity of rifampicin and ethambutol

    Get PDF
    Introduction: The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis threatens decades of progress in the treatment of a disease which remains one of the leading infectious causes of death worldwide. The development of novel antimycobacterial compounds is therefore essential to reinforce the existing antitubercular drug discovery pipeline. There is also interest in new compounds which can synergize with existing antitubercular drugs and can be deployed as part of a combination therapy. This strategy could serve to delay the emergence of resistance to first-line anti-tuberculosis drugs and increase their efficacy against resistant strains of tuberculosis. Previous research has established that several C-1 substituted tetrahydroisoquinolines have antimycobacterial activity. Here we sought to expand our understanding of their antimycobacterial structure activity relationships and their potential to act as adjunct therapies alongside existing antitubercular drugs./ Methods: Three chemical series were synthesised and assayed for their antimycobacterial potency, mammalian cell toxicity, inhibition of whole-cell efflux and synergism with isoniazid, rifampicin, and ethambutol. Results: Several compounds were found to inhibit the growth of mycobacteria. Potent inhibitors of whole-cell efflux were also identified, as well as compounds which exhibited synergism with rifampicin and ethambutol./ Conclusions: Structure-activity relationships were identified for antimycobacterial potency, improved selectivity, whole cell efflux inhibition and synergism. Potent whole-cell efflux inhibitors and synergistic compounds were identified, suggesting potential development as adjuncts to existing anti-tuberculosis chemotherapy.

    C-1 Substituted isoquinolines potentiate the antimycobacterial activity of rifampicin and ethambutol

    Get PDF
    IntroductionThe emergence of extensively drug-resistant strains of Mycobacterium tuberculosis threatens decades of progress in the treatment of a disease which remains one of the leading infectious causes of death worldwide. The development of novel antimycobacterial compounds is therefore essential to reinforce the existing antitubercular drug discovery pipeline. There is also interest in new compounds which can synergize with existing antitubercular drugs and can be deployed as part of a combination therapy. This strategy could serve to delay the emergence of resistance to first-line anti-tuberculosis drugs and increase their efficacy against resistant strains of tuberculosis. Previous research has established that several C-1 substituted tetrahydroisoquinolines have antimycobacterial activity. Here we sought to expand our understanding of their antimycobacterial structure activity relationships and their potential to act as adjunct therapies alongside existing antitubercular drugs.MethodsThree chemical series were synthesised and assayed for their antimycobacterial potency, mammalian cell toxicity, inhibition of whole-cell efflux and synergism with isoniazid, rifampicin, and ethambutol.ResultsSeveral compounds were found to inhibit the growth of mycobacteria. Potent inhibitors of whole-cell efflux were also identified, as well as compounds which exhibited synergism with rifampicin and ethambutol.ConclusionsStructure-activity relationships were identified for antimycobacterial potency, improved selectivity, whole cell efflux inhibition and synergism. Potent whole-cell efflux inhibitors and synergistic compounds were identified, suggesting potential development as adjuncts to existing anti-tuberculosis chemotherapy

    'Acanthamoeba' produces disseminated infection in locusts and traverses the locust blood-brain barrier to invade the central nervous system

    Get PDF
    BACKGROUND: Many aspects of Acanthamoeba granulomatous encephalitis remain poorly understood, including host susceptibility and chronic colonization which represent important features of the spectrum of host-pathogen interactions. Previous studies have suggested locusts as a tractable model in which to study Acanthamoeba pathogenesis. Here we determined the mode of parasite invasion of the central nervous system (CNS). RESULTS: Using Acanthamoeba isolates belonging to the T1 and T4 genotypes, the findings revealed that amoebae induced sickness behaviour in locusts, as evidenced by reduced faecal output and weight loss and, eventually, leading to 100% mortality. Significant degenerative changes of various tissues were observed by histological sectioning. Both isolates produced disseminated infection, with viable amoebae being recovered from various tissues. Histological examination of the CNS showed that Acanthamoeba invaded the locust CNS, and this is associated with disruption of the perineurium cell/glial cell complex, which constitutes the locust blood-brain barrier. CONCLUSIONS: This is the first study to demonstrate that Acanthamoeba invades locust brain by modulating the integrity of the insect's blood-brain barrier, a finding that is consistent with the human infection. These observations support the idea that locusts provide a tractable model to study Acanthamoeba encephalitis in vivo. In this way the locust model may generate potentially useful leads that can be tested subsequently in mammalian systems, thus replacing the use of vertebrates at an early stage, and reducing the numbers of mammals required overall

    Design and Synthesis of 1-((1,5-Bis(4-chlorophenyl)-2-methyl-1H-pyrrol-3-yl)methyl)-4-methylpiperazine (BM212) and N-Adamantan-2-yl-N′-((E)-3,7-dimethylocta-2,6-dienyl)ethane-1,2-diamine (SQ109) Pyrrole Hybrid Derivatives: Discovery of Potent Antitubercular Agents Effective against Multidrug-Resistant Mycobacteria

    Get PDF
    Novel pyrroles have been designed, synthesized, and evaluated against mycobacterial strains. The pyrroles have originally been designed as hybrids of the antitubercular drugs BM212 (1) and SQ109 (2), which showed common chemical features with very similar topological distribution. A perfect superposition of the structures of 1 and 2 revealed by computational studies suggested the introduction of bulky substituents at the terminal portion of the pyrrole C3 side chain and the removal of the C5 aryl moiety. Five compounds showed high activity toward Mycobacterium tuberculosis, while 9b and 9c were highly active also against multidrug-resistant clinical isolates. Compound 9c showed low eukaryotic cell toxicity, turning out to be an excellent lead candidate for preclinical trials. In addition, four compounds showed potent inhibition (comparable to that of verapamil) toward the whole-cell drug efflux pump activity of mycobacteria, thus turning out to be promising multidrug-resistance-reversing agents

    Fourth Update on the Iranian National Registry of Primary Immunodeficiencies: Integration of Molecular Diagnosis

    No full text

    Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives

    No full text
    corecore