3,818 research outputs found

    Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    Full text link
    We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and cosmic microwave background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.Comment: 29 pages, 10 figure

    Orbiting passive microwave sensor simulation applied to soil moisture estimation

    Get PDF
    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution

    Effect of Sigma-beam Asymmetry Data on Fits to Single Pion Photoproduction off Neutron

    Full text link
    We investigate the influence of new GRAAL Sigma-beam asymmetry measurements on the neutron in multipole fits to the single-pion photoproduction database. Results are compared to those found with the addition of a double-polarization quantity associated with the sum rule.Comment: 4 pages, 4 figures, 1 table; v2/v3: minor corrections; Presented at the 8th Workshop on the Physics of Excited Nucleons (NSTAR2011), Newport News, USA, May 201

    Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    Full text link
    We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe\nu_e, νˉe\bar\nu_e, νμ\nu_\mu, νˉμ\bar\nu_\mu, ντ\nu_\tau, νˉτ\bar\nu_\tau energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for: the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter \neff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4%0.4\% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.Comment: 37 pages, 12 Figures, 6 Table

    Structure Prediction of Ordered and Disordered Multiple Octahedral Cation Perovskites using SPuDS

    Get PDF
    The software package SPuDS has previously been shown to accurately predict crystal structures of AMX3 and A1 - xA\u27xMX3 perovskites that have undergone octahedral tilting distortions. This paper describes the extension of this technique and its accuracy for A2MM\u27X6 ordered double perovskites with the aristotype Fm3Ì„m cubic structure, as well as those that have undergone octahedral tilting distortions. A survey of the literature shows that roughly 70% of all ordered double perovskites undergo octahedral tilting distortions. Of the 11 distinct types of octahedral tilting that can occur in ordered perovskites, five tilt systems account for ~97% of the reported structures. SPuDS can calculate structures for the five dominant tilt systems, Fm3Ì„m (a0a0a0), I4/m (a0a0c-), R3Ì„ (a-a-a-), I2/m (a0b-b-) and P21/n (a-a-b+), as well as two additional tilt systems, Pn3Ì„ (a+a+a+) and P4/mnc (a0a0c+). Comparison with reported crystal structures shows that SPuDS is quite accurate at predicting distortions driven by octahedral tilting. The favored modes of octahedral tilting in ordered double perovskites are compared and contrasted with those in AMX3 perovskites. Unit-cell pseudosymmetry in Sr- and Ca-containing double perovskites is also examined. Experimentally, Sr2MM\u27O6 compounds show a much stronger tendency toward pseudosymmetry than do Ca2MM\u27O6 compounds with similar tolerance factors
    • …
    corecore