3,206 research outputs found

    Final state interaction contribution to the response of confined relativistic particles

    Full text link
    We report studies of the response of a massless particle confined by a potential. At large momentum transfer q it exhibits \tilde{y} or equivalently Nachtmann \xi scaling, and acquires a constant width independent of q. This width has a contribution from the final state interactions of the struck particle, which persists in the q->\infty limit. The width of the response predicted using plane wave impulse approximation is smaller because of the neglect of final state interactions in that approximation. However, the exact response may be obtained by folding the approximate response with a function representing final state interaction effects. We also study the response obtained from the momentum distribution assuming that the particle is on the energy shell both before and after being struck. Quantitative results are presented for the special case of a linear confining potential. In this case the response predicted with the on-shell approximation has correct values for the total strength, mean energy and width, however its shape is wrong.Comment: 11 pages, 3 figures, submitted to Phys. Rev.

    An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures

    Get PDF
    Métodos de extração, mudanças na concentração durante o crescimento e efeitos de condições de cultivo sobre conteúdos de nitrogênio inorgânico intracelular (NII - amônia, nitrito e nitrato) foram estudados em nove espécies de microalgas marinhas em cultivos estanques. As microalgas foram analisadas para comparar três métodos de extração de NII, um dos quais desenvolvido neste estudo. A extração de NII ocorre de forma eficiente com os três métodos para quatro espécies. Contudo, para cinco espécies diferenças significativas foram encontradas e os melhores resultados foram obtidos com o método novo. As microalgas acumulam formas inorgânicas de nitrogênio em proporções diferentes. As espécies apresentam concentrações de amônia ou nitrato como as mais altas e sempre menores concentrações de nitrito. Microalgas de menores volumes celulares tendem a atingir valores mais altos de NII por micrômetro cúbico (contrariamente para espécies de volumes celulares maiores), com algumas exceções (Amphidinium carterae e Nannochloropsis oculata). A adição de aeração nos cultivos determina um decréscimo na concentração de NII, favorece a assimilação de nitrogênio e gera um aumento na taxa de crescimento e na razão C:N. Concentrações altas de NII são características da fase de crescimento exponencial, mas em alguns casos sua ocorrência pode resultar de deficiência por carbono.Methods of extraction, changes in concentrations with growth, and effects of culture conditions on intracellular inorganic nitrogen pools (IIN - ammonia, nitrite, and nitrate) were studied in nine species of marine microalgae in batch cultures. The microalgae were analysed to compare three methods of extraction of IIN, one of them developed in this study. The extraction of IIN occurs efficient by with all three methods for four out of the nine species tested. However, for five species significant differences were found among the methods, the best results being obtained with the new method. Microalgae accumulate inorganic forms of nitrogen in different proportions. The species show higher concentrations of either ammonia or nitrate, and always lower concentrations of nitrite. Microalgae of smaller cellular volumes tend to attain higher values of IIN per cubic micrometer (the converse in large-volume species), with some exceptions (Amphidinium carterae and Nannochloropsis oculata). The use of aeration in the cultures determines a decrease in the concentrations of IIN, favours nitrogen assimilation, and generates an increase in growth rates and C:N ratio. High concentrations of IIN are characteristic of the exponential growth phase, but in some cases their occurrence may result from carbon deficiency

    Information criteria for efficient quantum state estimation

    Full text link
    Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state. We add one more method in that same spirit: we allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned cases, but is based on well-established statistical methods that go under the name of "information criteria." We exploit here, in particular, the Akaike Information Criterion (AIC). We illustrate the method by simulating experiments on (noisy) Dicke states

    Remote state preparation and teleportation in phase space

    Full text link
    Continuous variable remote state preparation and teleportation are analyzed using Wigner functions in phase space. We suggest a remote squeezed state preparation scheme between two parties sharing an entangled twin beam, where homodyne detection on one beam is used as a conditional source of squeezing for the other beam. The scheme works also with noisy measurements, and provide squeezing if the homodyne quantum efficiency is larger than 50%. Phase space approach is shown to provide a convenient framework to describe teleportation as a generalized conditional measurement, and to evaluate relevant degrading effects, such the finite amount of entanglement, the losses along the line, and the nonunit quantum efficiency at the sender location.Comment: 2 figures, revised version to appear in J.Opt.

    AC electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications

    Full text link
    Electrokinetic boundary conditions are derived for AC electrokinetic (ACEK) phenomena over leaky dielectric (i.e., semiconducting) surfaces. Such boundary conditions correlate the electric potentials across the semiconductor-electrolyte interface (consisting of the electric double layer (EDL) inside the electrolyte solutions and the space charge layer (SCL) inside the semiconductors) under AC electric fields with arbitrary wave forms. The present electrokinetic boundary conditions allow for evaluation of induced zeta potential contributed by both bond charges (due to electric polarization) and free charges (due to electric conduction) from the leaky dielectric materials. Subsequently, we demonstrate the applications of these boundary conditions in analyzing the ACEK phenomena around a semiconducting cylinder. It is concluded that the flow circulations exist around the semiconducting cylinder and are shown to be stronger under an AC field with lower frequency and around a cylinder with higher conductivity.Comment: 29 pages, 4 figure
    corecore