4,220 research outputs found

    Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    Full text link
    We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and cosmic microwave background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.Comment: 29 pages, 10 figure

    Orbiting passive microwave sensor simulation applied to soil moisture estimation

    Get PDF
    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution

    Final state interaction contribution to the response of confined relativistic particles

    Full text link
    We report studies of the response of a massless particle confined by a potential. At large momentum transfer q it exhibits \tilde{y} or equivalently Nachtmann \xi scaling, and acquires a constant width independent of q. This width has a contribution from the final state interactions of the struck particle, which persists in the q->\infty limit. The width of the response predicted using plane wave impulse approximation is smaller because of the neglect of final state interactions in that approximation. However, the exact response may be obtained by folding the approximate response with a function representing final state interaction effects. We also study the response obtained from the momentum distribution assuming that the particle is on the energy shell both before and after being struck. Quantitative results are presented for the special case of a linear confining potential. In this case the response predicted with the on-shell approximation has correct values for the total strength, mean energy and width, however its shape is wrong.Comment: 11 pages, 3 figures, submitted to Phys. Rev.

    Toward a unified description of hadro- and photoproduction amplitudes

    Full text link
    The near-term objectives of the research program at the Data Analysis Center are established within the context of the existing partial wave analyses available through the online suite of analysis and database codes accessible through SAID, the Scattering Analysis Interactive Database. This presentation reviews the efforts to determine a model independent method to obtain sets of partial wave amplitudes for strong and electromagnetic reactions, the interpretation of the amplitudes in terms of the excited states of the nucleon, the role of new precision unpolarized and polarized data, and new developments aimed at determining the photoproduction mulitpoles in a unitary, coupled-channel approach. The Chew-Mandelstam technique is discussed and applied to the problem of the S-wave pion- and eta-photoproduction amplitudes. The resulting eta production amplitudes exhibit the expected resonant behavior near the eta production threshold. Application of this method to a unified description of the hadro- and photoproduction amplitudes is discussed.Comment: 4 pages, 1 figure, invited talk for the 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2010), Williamsburg, Virginia, 31 May - 4 Jun 201

    Effect of Sigma-beam Asymmetry Data on Fits to Single Pion Photoproduction off Neutron

    Full text link
    We investigate the influence of new GRAAL Sigma-beam asymmetry measurements on the neutron in multipole fits to the single-pion photoproduction database. Results are compared to those found with the addition of a double-polarization quantity associated with the sum rule.Comment: 4 pages, 4 figures, 1 table; v2/v3: minor corrections; Presented at the 8th Workshop on the Physics of Excited Nucleons (NSTAR2011), Newport News, USA, May 201

    Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    Full text link
    We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe\nu_e, νˉe\bar\nu_e, νμ\nu_\mu, νˉμ\bar\nu_\mu, ντ\nu_\tau, νˉτ\bar\nu_\tau energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for: the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter \neff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4%0.4\% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.Comment: 37 pages, 12 Figures, 6 Table
    • …
    corecore