2,696 research outputs found

    Prevalence of exclusive breastfeeding and its determinants in first 6 months of life: A prospective study

    Get PDF
    Background: Exclusive breastfeeding for first 6 months of life is recommended under Infant and Young Child Feeding practices in India. The objective of present study was to estimate the prevalence of exclusive breastfeeding during first 6 months of life of babies and to identify factors that interfere with the practice in the study area. Methods: A prospective cohort of 462 women who delivered at maternity unit of Government Medical College & Hospital, Rajkot, which is a tertiary care centre for the district, was studied. Data collection was done at hospital as well as during home visits of babies at 1, 3 and 6 months. Factors related to cessation of breastfeeding were analyzed using univariate, bivariate and multivariate analysis. Results: All 462 mothers reported breastfeeding their newborns. Prevalence of exclusive breastfeeding reported at 3 months was 97% which declined to 62% by 6 months of age of infants. Bivariate analysis revealed no significant association between interruption of exclusive breastfeeding before 6 months of age and various demographic, socioeconomic, maternal and infant characteristics. Multivariate analysis by logistic regression demonstrated no association between discontinuation of exclusive breastfeeding and socioeconomic status, maternal education and maternal age, number of antenatal visits, maternal employment and initiation of breastfeeding after delivery. Conclusion: Exclusive breastfeeding prevalence rate found higher than at national level indicating better feeding practices in these part of India. Also, factors classically considered as supportive for breastfeeding had shown no association with breastfeeding pattern in present study

    Further constraints on neutron star crustal properties in the low-mass X-ray binary 1RXS J180408.9−-342058

    Full text link
    We report on two new quiescent {\it XMM-Newton} observations (in addition to the earlier {\it Swift}/XRT and {\it XMM-Newton} coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9−-342058. Its crust was heated during the ∼\sim4.5 month accretion outburst of the source. From our quiescent observations, fitting the spectra with a neutron star atmosphere model, we found that the crust had cooled from ∼\sim 100 eV to ∼\sim73 eV from ∼\sim8 days to ∼\sim479 days after the end of its outburst. However, during the most recent observation, taken ∼\sim860 days after the end of the outburst, we found that the crust appeared not to have cooled further. This suggested that the crust had returned to thermal equilibrium with the neutron star core. We model the quiescent thermal evolution with the theoretical crustal cooling code NSCool and find that the source requires a shallow heat source, in addition to the standard deep crustal heating processes, contributing ∼\sim0.9 MeV per accreted nucleon during outburst to explain its observed temperature decay. Our high quality {\it XMM-Newton} data required an additional hard component to adequately fit the spectra. This slightly complicates our interpretation of the quiescent data of 1RXS J180408.9−-342058. The origin of this component is not fully understood.Comment: Accepted for publication by MNRA

    Editorial: hepatocellular carcinoma – a rare complication of hepatic venous outflow tract obstruction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111131/1/apt13198.pd

    A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data

    Full text link
    We propose a matrix factorization technique that decomposes the resting state fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set of representative subnetworks, as modeled by rank one outer products. The subnetworks are combined using patient specific non-negative coefficients; these coefficients are also used to model, and subsequently predict the clinical severity of a given patient via a linear regression. Our generative-discriminative framework is able to exploit the structure of rs-fMRI correlation matrices to capture group level effects, while simultaneously accounting for patient variability. We employ ten fold cross validation to demonstrate the predictive power of our model on a cohort of fifty eight patients diagnosed with Autism Spectrum Disorder. Our method outperforms classical semi-supervised frameworks, which perform dimensionality reduction on the correlation features followed by non-linear regression to predict the clinical scores

    Very hard states in neutron star low-mass X-ray binaries

    Get PDF
    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra (0.5 - 10 keV) in those states with an absorbed power-law model, we found photon indices of \Gamma ~ 1, significantly lower than the \Gamma = 1.5 - 2.0 typically seen when such systems are in their so called hard state. For individual sources very hard spectra were already previously identified but here we show for the first time that likely our sources were in a distinct spectral state (i.e., different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e., up-scattering of soft photons due to hot electrons) then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained \Gamma as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. (2015). We confirm their general results in that also our sample of sources follow the same track as the other neutron star systems, although we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.Comment: Accepted for publication in MNRA

    De Sitter Holography with a Finite Number of States

    Full text link
    We investigate the possibility that, in a combined theory of quantum mechanics and gravity, de Sitter space is described by finitely many states. The notion of observer complementarity, which states that each observer has complete but complementary information, implies that, for a single observer, the complete Hilbert space describes one side of the horizon. Observer complementarity is implemented by identifying antipodal states with outgoing states. The de Sitter group acts on S-matrix elements. Despite the fact that the de Sitter group has no nontrivial finite-dimensional unitary representations, we show that it is possible to construct an S-matrix that is finite-dimensional, unitary, and de Sitter-invariant. We present a class of examples that realize this idea holographically in terms of spinor fields on the boundary sphere. The finite dimensionality is due to Fermi statistics and an `exclusion principle' that truncates the orthonormal basis in which the spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe

    Mentalising and social problem solving in adults with Asperger's syndrome

    Get PDF
    It is well established that autistic spectrum disorder is linked to difficulties with mentalising, but the ways in which this affects everyday behaviour is less well understood. This study explored the nature and extent of difficulties in everyday social functioning in adults with Asperger's syndrome (AS), since increased understanding can enhance the development of more effective intervention strategies. Methods Individuals with AS (n=21) were compared with healthy control participants (n=21) on three tests of social cognition: the Mentalistic Interpretation task, which assesses interpretation of sarcasm and actions; the Social Problem Fluency task, which assesses ability to generate problem solutions; and the Social Problem Resolution task, which assesses judgement in selecting problem solutions. Results Comprehension of both sarcastic remarks and actions was impaired in those with AS on the mentalistic interpretation task. Participants with AS showed difficulties in identifying the awkward elements of everyday social scenarios, and they were also impaired in generating problem solutions but not in judging alternative solutions on the social problem fluency and resolution tasks. Conclusions These tasks potentially provide a means of profiling strengths and weaknesses in social processing, which in turn has implications for informing clinical evaluation and training. © 2013 Taylor & Francis

    Effective temperature for black holes

    Full text link
    The physical interpretation of black hole's quasinormal modes is fundamental for realizing unitary quantum gravity theory as black holes are considered theoretical laboratories for testing models of such an ultimate theory and their quasinormal modes are natural candidates for an interpretation in terms of quantum levels. The spectrum of black hole's quasinormal modes can be re-analysed by introducing a black hole's effective temperature which takes into account the fact that, as shown by Parikh and Wilczek, the radiation spectrum cannot be strictly thermal. This issue changes in a fundamental way the physical understanding of such a spectrum and enables a re-examination of various results in the literature which realizes important modifies on quantum physics of black holes. In particular, the formula of the horizon's area quantization and the number of quanta of area result modified becoming functions of the quantum "overtone" number n. Consequently, the famous formula of Bekenstein-Hawking entropy, its sub-leading corrections and the number of microstates are also modified. Black hole's entropy results a function of the quantum overtone number too. We emphasize that this is the first time that black hole's entropy is directly connected with a quantum number. Previous results in the literature are re-obtained in the limit n \to \infty.Comment: 10 pages,accepted for publication in Journal of High Energy Physics. Comments are welcom
    • …
    corecore