156 research outputs found

    Capture and printing of fixed stromal cell membranes for bioactive display on PDMS surfaces

    Get PDF
    Polydimethylsiloxane (PDMS) has emerged as an extremely useful polymer for various biological applications. The conjugation of PDMS with bioactive molecules to create functional surfaces is feasible, yet limited to single molecule display with imprecise localization of the molecules on PDMS. Here we report a robust technique that can transfer and print the membrane surface of glutaraldehyde-fixed stromal cells intact to a PDMS substrate using an intermediate polyvinylalcohol (PVA) film as a transporter system. The cell-PVA film capturing the entirety of surface molecules can be peeled off and subsequently printed onto PDMS while maintaining the spatial display of the original cell surface molecules. Proof-of-concept studies are described using human bone marrow stromal cell membranes, including the demonstration of bioactivity of transferred membranes to capture and adhere hematopoietic cells. The presented process is applicable to virtually any adherent cell and can broaden the functional display of biomolecules on PDMS for biotechnology applications

    Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models

    Get PDF
    Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor-cell intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells (CTCs) into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL-1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research

    Immunomodulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in a Swine Hemi-Facial Allotransplantation Model

    Get PDF
    BACKGROUND: In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs), combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA) model. METHODOLOGY/PRINCIPAL FINDINGS: Outbred miniature swine underwent hemi-facial allotransplantation (day 0). Group-I (n = 5) consisted of untreated control animals. Group-II (n = 3) animals received MSCs alone (given on days -1, +1, +3, +7, +14, and +21). Group-III (n = 3) animals received CsA (days 0 to +28). Group-IV (n = 5) animals received CsA (days 0 to +28) and MSCs (days -1, +1, +3, +7, +14, and +21). The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant) or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001). Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3(+)T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. CONCLUSIONS: These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not only suppress inflammation and acute rejection of CTA, but also modulate T-cell regulation and related cytokines expression

    A physiologically based kinetic model for elucidating the in vivo distribution of administered mesenchymal stem cells

    Get PDF
    Although mesenchymal stem cells (MSCs) present a promising tool in cell therapy for the treatment of various diseases, the in vivo distribution of administered MSCs has still been poorly understood, which hampers the precise prediction and evaluation of their therapeutic efficacy. Here, we developed the first model to characterize the physiological kinetics of administered MSCs based on direct visualization of cell spatiotemporal disposition by intravital microscopy and assessment of cell quantity using flow cytometry. This physiologically based kinetic model was validated with multiple external datasets, indicating potential inter-route and inter-species predictive capability. Our results suggest that the targeting efficiency of MSCs is determined by the lung retention and interaction between MSCs and target organs, including cell arrest, depletion and release. By adapting specific parameters, this model can be easily applied to abnormal conditions or other types of circulating cells for designing treatment protocols and guiding future experiments

    Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Hepatic Ischemia Reperfusion Injury in a Rat Model

    Get PDF
    BACKGROUND: Ischemia-reperfusion (I/R) injury associated with living donor liver transplantation impairs liver graft regeneration. Mesenchymal stem cells (MSCs) are potential cell therapeutic targets for liver disease. In this study, we demonstrate the impact of MSCs against hepatic I/R injury and hepatectomy. METHODOLOGY/PRINCIPAL FINDINGS: We used a new rat model in which major hepatectomy with I/R injury was performed. Male Lewis rats were separated into two groups: an MSC group given MSCs after reperfusion as treatment, and a Control group given phosphate-buffered saline after reperfusion as placebo. The results of liver function tests, pathologic changes in the liver, and the remnant liver regeneration rate were assessed. The fate of transplanted MSCs in the luciferase-expressing rats was examined by in vivo luminescent imaging. The MSC group showed peak luciferase activity of transplanted MSCs in the remnant liver 24 h after reperfusion, after which luciferase activity gradually declined. The elevation of serum alanine transaminase levels was significantly reduced by MSC injection. Histopathological findings showed that vacuolar change was lower in the MSC group compared to the Control group. In addition, a significantly lower percentage of TUNEL-positive cells was observed in the MSC group compared with the controls. Remnant liver regeneration rate was accelerated in the MSC group. CONCLUSIONS/SIGNIFICANCE: These data suggest that MSC transplantation provides trophic support to the I/R-injured liver by inhibiting hepatocellular apoptosis and by stimulating regeneration

    Intersection of inflammation and herbal medicine in the treatment of osteoarthritis

    Get PDF
    Herbal remedies and dietary supplements have become an important area of research and clinical practice in orthopaedics and rheumatology. Understanding the risks and benefits of using herbal medicines in the treatment of arthritis, rheumatic diseases, and musculoskeletal complaints is a key priority of physicians and their patients. This review discusses the latest advances in the use of herbal medicines for treating osteoarthritis (OA) by focusing on the most significant trends and developments. This paper sets the scene by providing a brief introduction to ethnopharmacology, Ayurvedic medicine, and nutrigenomics before discussing the scientific and mechanistic rationale for targeting inflammatory signalling pathways in OA by use of herbal medicines. Special attention is drawn to the conceptual and practical difficulties associated with translating data from in-vitro experiments to in-vivo studies. Issues relating to the low bioavailability of active ingredients in herbal medicines are discussed, as also is the need for large-scale, randomized clinical trial

    Age-dependent response of murine female bone marrow cells to hyperbaric oxygen

    Get PDF
    Consequences of age on the effects of hyperbaric oxygen (HBO) on bone marrow (BM) derived stem cells and progenitors (SCPs) are largely unknown. We treated 2- and 18-month old C57BL/6 female mice by HBO. Hematopoietic stem cells and progenitors, enumerated as colony-forming units in culture, were doubled only in peripheral leukocytes and BM cells of young mice receiving HBO. In old mice colony-forming unit fibroblast numbers, a measure of mesenchymal stromal cells (MSCs) from BM, were high but unaffected by HBO. To further explore this finding, in BM-MSCs we quantified the transcripts of adipocyte early-differentiation genes peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein-β and fatty-acid binding protein 4; these transcripts were not affected by age or HBO. However, osteoblast gene transcripts runt-related transcription factor 2, osterix (OSX) and alkaline phosphatase (AP) were twofold to 20-fold more abundant in MSCs from old control mice relative to those of young control mice. HBO affected expression of osteoblast markers only in old MSCs (OSX gene expression was reduced by twofold and AP expression was increased threefold). Our data demonstrate the impact of aging on the response of BM SCPs to HBO and indicate the potentially different age-related benefit of HBO in wound healing and tissue remodeling

    Bone Marrow Stromal Cell Transplantation Mitigates Radiation-Induced Gastrointestinal Syndrome in Mice

    Get PDF
    Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16-20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies

    IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis

    Get PDF
    BACKGROUND: Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. PRINCIPAL FINDINGS: In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. SIGNIFICANCE: Our data indicate that mscs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile
    corecore