400 research outputs found

    Multiple genetically engineered humanized microenvironments in a single mouse

    Get PDF
    Background Immunodeficient mouse models that accept human cell and tissue grafts can contribute greater knowledge to human stem cell research. In this technical report, we used biomaterial implants seeded with genetically engineered stromal cells to create several unique microenvironments in a single mouse. The scope of study was focused on human CD34 hematopoietic stem/progenitor cell (HSPC) engraftment and differentiation within the engineered microenvironment. Results A mouse model system was created using subdermal implant sites that overexpressed a specific human cytokines (Vascular Endothelial Growth Factor A (hVEGFa), Stromal Derived Factor 1 Alpha (hSDF1a), or Tumor Necrosis Factor Alpha (hTNFa)) by stromal cells in a three-dimensional biomaterial matrix. The systemic exposure of locally overexpressed cytokines was minimized by controlling the growth of stromal cells, which led to autonomous local, concentrated sites in a single mouse for study. This biomaterial implant approach allowed for the local analysis of each cytokine on hematopoietic stem cell recruitment, engraftment and differentiation in four different tissue microenvironments in the same host. The engineered factors were validated to have bioactive effects on human CD34+ hematopoietic progenitor cell differentiation. Conclusions This model system can serve as a new platform for the study of multiple human proteins and their local effects on hematopoietic cell biology for in vivo validation studies

    Cellular and molecular immuno therapeutics derived from the bone marrow stroma

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2008.Includes bibliographical references (p. 155-174).The bone marrow contains a multipotent stromal cell, commonly referred to as a mesenchymal stem cell (MSC). There has been recent interest in the clinical use of MSCs for cell-based therapy because: (1) bone marrow aspiration is a routine method used in medicine thereby allowing for easy accessibility to human MSCs; (2) MSCs are easily isolated and can expand to clinical scales in a relatively short period of time; (3) MSCs can be biopreserved without loss of potency and stored for point-of-care delivery; and (4) human trials of MSCs thus far have shown no adverse reactions to allogeneic versus autologous MSC transplants suggesting that therapy can cross histocompatibility barriers. This thesis describes the development of new modalities and indications for MSC-based treatments by leveraging the endogenous functions of these cells for therapeutic purposes. First, it is known that marrow stromal cells support hematopoiesis by secreting bioactive molecules that aid in the growth, differentiation, function and migration of hematopoietic cells within the marrow cavity. We show that these same secreted molecules derived from MSCs ex vivo can be formulated as an intravenous drug. In a D-galactosamine model of acute liver failure, a bolus injection of a concentrated form of MSC conditioned medium (MSC-CM) led to a significant survival benefit with a one week study endpoint. We employed in vitro and in vivo assays to demonstrate the effect of MSC-CM on leukocytes and resident liver cells. Traditional biochemical approaches were performed to identify active fractions within MSC-CM that were responsible for its therapeutic efficacy. As a corollary to an injectable drug, we developed MSCbased extracorporeal devices to serve as a dynamic source of MSC-CM in a dialysis-like setting.(cont.) Liver injured rats supported by extracorporeal bioreactors seeded with MSCs had significant improvements in liver serologies and survival in the short-term, whereas a composite device containing both MSCs and hepatocytes was shown to have a long-term survival benefit after 30 days. The second natural function of MSCs that was exploited for therapy concerns recent evidence that stromal cells can present antigens in lymphoid organs. We discovered that MSCs can express peripheral tissue antigens similar to other specialized antigen presenting cells in the thymus and lymph nodes - a process known to induce tolerance to self-reactive T cells in vivo. We show that MSC transplantation can be an effective treatment of intestinal autoimmunity in a chemically-induced model of colitis and a mouse model deficient in regulatory T cells. In addition, we demonstrate that MSC grafts increase the endogenous population of suppressor cells in vivo, which can potentially amplify and sustain the immunosuppression of the original transplant. The proposed work is significant, as development of such therapies for acute liver failure and inflammatory bowel disease would potentially treat an estimated 100,000+ newly diagnosed patients or ones who are refractory or contraindicated to standard-of-care medical/surgical procedures. These studies may empower the future use of MSCs in other organ failure syndromes and autoimmune conditions. Finally, exploration of the therapeutic functions of MSCs is expected to enhance our understanding of the mechanisms involved in cell therapy and give further insight to the natural functions of MSCs during health and disease.by Biju Parekkadan.Ph.D

    Capture and printing of fixed stromal cell membranes for bioactive display on PDMS surfaces

    Get PDF
    Polydimethylsiloxane (PDMS) has emerged as an extremely useful polymer for various biological applications. The conjugation of PDMS with bioactive molecules to create functional surfaces is feasible, yet limited to single molecule display with imprecise localization of the molecules on PDMS. Here we report a robust technique that can transfer and print the membrane surface of glutaraldehyde-fixed stromal cells intact to a PDMS substrate using an intermediate polyvinylalcohol (PVA) film as a transporter system. The cell-PVA film capturing the entirety of surface molecules can be peeled off and subsequently printed onto PDMS while maintaining the spatial display of the original cell surface molecules. Proof-of-concept studies are described using human bone marrow stromal cell membranes, including the demonstration of bioactivity of transferred membranes to capture and adhere hematopoietic cells. The presented process is applicable to virtually any adherent cell and can broaden the functional display of biomolecules on PDMS for biotechnology applications

    Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models

    Get PDF
    Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor-cell intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells (CTCs) into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL-1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research

    Enriched protein screening of human bone marrow mesenchymal stromal cell secretions reveals MFAP5 and PENK as novel IL-10 modulators

    Get PDF
    The secreted proteins from a cell constitute a natural biologic library that can offer significant insight into human health and disease. Discovering new secreted proteins from cells is bounded by the limitations of traditional separation and detection tools to physically fractionate and analyze samples. Here, we present a new method to systematically identify bioactive cell-secreted proteins that circumvent traditional proteomic methods by first enriching for protein candidates by differential gene expression profiling. The bone marrow stromal cell secretome was analyzed using enriched gene expression datasets in combination with potency assay testing. Four proteins expressed by stromal cells with previously unknown anti-inflammatory properties were identified, two of which provided a significant survival benefit to mice challenged with lethal endotoxic shock. Greater than 85% of secreted factors were recaptured that were otherwise undetected by proteomic methods, and remarkable hit rates of 18% in vitro and 9% in vivo were achieved

    Immunomodulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in a Swine Hemi-Facial Allotransplantation Model

    Get PDF
    BACKGROUND: In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs), combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA) model. METHODOLOGY/PRINCIPAL FINDINGS: Outbred miniature swine underwent hemi-facial allotransplantation (day 0). Group-I (n = 5) consisted of untreated control animals. Group-II (n = 3) animals received MSCs alone (given on days -1, +1, +3, +7, +14, and +21). Group-III (n = 3) animals received CsA (days 0 to +28). Group-IV (n = 5) animals received CsA (days 0 to +28) and MSCs (days -1, +1, +3, +7, +14, and +21). The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant) or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001). Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3(+)T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. CONCLUSIONS: These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not only suppress inflammation and acute rejection of CTA, but also modulate T-cell regulation and related cytokines expression
    • …
    corecore