19 research outputs found

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Cross-correlation of sdss dr7 quasars and dr10 boss galaxies: The weak luminosity dependence of quasar clustering at z ∼ 0.5

    No full text
    We present the measurement of the two-point cross-correlation function (CCF) of 8198 Sloan Digital Sky Survey Data Release 7 quasars and 349,608 Data Release 10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey at 0.3 < z < 0.9. The CCF can be reasonably well fit by a power-law model ξQG(r) = (r/r 0) on projected scales of rp = 2-25 h Mpc with r 0 = 6.61 ± 0.25 h Mpc and γ = 1.69 ± 0.07. We estimate a quasar linear bias of bQ = 1.38 ± 0.10 at 〈z〉 = 0.53 from the CCF measurements, which corresponds to a characteristic host halo mass of ∼4 × 10 h M , compared with a ∼10 h M characteristic host halo mass for CMASS galaxies. Based on the clustering measurements, most quasars at are not the descendants of their higher luminosity counterparts at higher redshift, which would have evolved into more massive and more biased systems at low redshift. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be dbQ /dlog L = 0.20 ± 0.34 or 0.11 ± 0.32 (depending on different luminosity divisions) for quasar luminosities -23.5 > Mi (z = 2) > -25.5, implying a weak luminosity dependence of clustering for luminous quasars at . We compare our measurements with theoretical predictions, halo occupation distribution (HOD) models, and mock catalogs. These comparisons suggest that quasars reside in a broad range of host halos. The host halo mass distributions significantly overlap with each other for quasars at different luminosities, implying a poor correlation between halo mass and instantaneous quasar luminosity. We also find that the quasar HOD parameterization is largely degenerate such that different HODs can reproduce the CCF equally well, but with different satellite fractions and host halo mass distributions. These results highlight the limitations and ambiguities in modeling the distribution of quasars with the standard HOD approach. © 2013. The American Astronomical Society. All rights reserved.. -γ -1 -1 12 -1 13 -

    Polymorphisms in predator induced defences of coexisting Daphnia pulex and D. longispina

    No full text
    A comparison of juvenile predator-avoidance polymorphisms of Daphnia pulex and D. longispina in a shallow water body of Northern Italy is reported. The presence of the Chaoborus larvae resulted in juvenile adaptive predator-avoidance cyclomorphosis in both species. The frequency of induced morphotypes was higher in the small-sized D. longispina than in the large-sized D. pulex. Relative tail-spine size was higher in D. longispina than in D. pulex. D. longispina displayed much more responsiveness to Chaoborus than D. pulex. Both species showed at least 6 different defensive morphotypes that were classified according to the neckteeth number, the neckteeth position and the thickness of occipital epithelia under neckteeth. The frequencies of different morphotypes varied significantly between species. The developmental responses of Daphnia to the presence of predators are regulated at various levels, according to specific timelines of kairomone sensitive phases and developmental frame of defense trait formation. Variation of a specific timeline might be linked to flexibility in developmental responses of Daphnia to Chaoborus and seasonal variation in the frequencies of various morphotypes. Cyclomorphosis should not only be due to changes in environmental factors that directly affects risk, but also to ones that act as proxy signaling changes in predation risk

    The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: The low-redshift sample

    Get PDF
    We report on the small-scale (0.5 < r < 40 h-1 Mpc) clustering of 78 895 massive (M 1011.3M) galaxies at 0.2 < z< 0.4 from the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS), to be released as part of Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9). We describe the sample selection, basic properties of the galaxies and caveats for working with the data. We calculate the real- and redshift-space twopoint correlation functions of these galaxies, fit these measurements using halo occupation distribution (HOD) modelling within dark matter cosmological simulations, and estimate the errors using mock catalogues. These galaxies lie in massive haloes, with a mean halo mass of 5.2 1013 h-1M, a large-scale bias of ~2.0 and a satellite fraction of 12 ± 2 per cent. Thus, these galaxies occupy haloes with average masses in between those of the higher redshift BOSS CMASS sample and the original SDSS I/II luminous red galaxy sample © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society © doi:10.1093/mnras/sts314
    corecore