36 research outputs found

    Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions

    Get PDF
    Abstract Oil sludge or waste generated in transport, storage or refining forms highly stable mixtures due to the presence and additives with surfactant properties and water forming complex emulsions. Thus, demulsification is necessary to separate this residual oil from the aqueous phase for oil processing and water treatment/disposal. Most used chemical demulsifiers, although effective, are environmental contaminants and do not meet the desired levels of biodegradation. We investigated the application of microbial biosurfactants as potential natural demulsifiers of petroleum derivatives in water emulsions. Biosurfactants crude extracts, produced by yeasts (Candida guilliermondii, Candida lipolytica and Candida sphaerica) and bacteria (Pseudomonas aeruginosa, Pseudomonas cepacia and Bacillus sp.) grown in industrial residues, were tested for demulsification capacity in their crude and pure forms. The best results obtained were for bacterial biosurfactants, which were able to recover about 65% of the seawater emulsified with motor oil compared to 35–40% only for yeasts products. Biosurfactants were also tested with oil-in-water (O/W) and water-in-oil (W/O) kerosene model emulsions. No relationship between interfacial tension, cell hydrophobicity and demulsification ratios was observed with all the biosurfactants tested. Microscopic illustrations of the emulsions in the presence of the biosurfactants showed the aspects of the emulsion and demulsification process. The results obtained demonstrate the potential of these agents as demulsifiers in marine environments

    High cell density cultures of Schizosaccharomyces pombe in a cell-recycle reactor

    No full text
    International audienc

    Influence of pH and malate-glucose ratio on the growth kinetics of Leuconostoc oenos

    No full text
    International audienceGrowth, substrate utilization and product formation were studied in batch cultures of a Leuconostoc oenos strain. The effect of various culture conditions, i.e. pH-control at different values and various initial concentrations of malate and glucose, on growth and metabolism were investigated. Addition of malate resulted in a marked stimulation of growth, with only a slight increase in final biomass but a high conversion yield of glucose. Under pH control this stimulation was much greater than could be accounted for from changes in pH profile resulting from malate utilization. The specific rate of malate utilization was maximal at pH 4.0 whereas the specific rate of glucose consumption was highest at pH 5.5. During co-metabolism of malic acid and glucose, substrate utilization and product formation agreed with the stoichiometric relationships of the malo-lactic reaction and the heterolactic fermentation of glucose
    corecore