134 research outputs found

    Further Characterization of Clostridium perfringens Small Acid Soluble Protein-4 (Ssp4) Properties and Expression

    Get PDF
    Background: Clostridium perfringens type A food poisoning (FP) is usually caused by C. perfringens type A strains that carry a chromosomal enterotoxin gene (cpe) and produce spores with exceptional resistance against heat and nitrites. Previous studies showed that the extreme resistance of spores made by most FP strains is mediated, in large part, by a variant of small acid soluble protein 4 (Ssp4) that has Asp at residue 36; in contrast, the sensitive spores made by other C. perfringens type A isolates contain an Ssp4 variant with Gly at residue 36. Methodology/Principal Findings: The current study has further characterized Ssp4 properties and expression. Spores made by cpe-positive type C and D strains were found to contain the Ssp4 variant with Gly at residue 36 and were shown to be heat- and nitrite-sensitive; this finding may help to explain why cpe-positive type C and D isolates rarely cause food poisoning. Saturation mutagenesis indicated that both amino acid size and charge at Ssp4 residue 36 are important for DNA binding and for spore resistance. C. perfringens Ssp2 was shown to bind preferentially to GC-rich DNA on gel-shift assays, while Ssp4 preferred binding to AT-rich DNA sequences. Maximal spore heat and nitrite resistance required production of all four C. perfringens Ssps, indicating that these Ssps act cooperatively to protect the spore's DNA, perhaps by binding to different chromosomal sequences. The Ssp4 variant with Asp at residue 36 was also shown to facilitate exceptional spore survival at freezer and refrigerator temperatures. Finally, Ssp4 expression was shown to be dependent upon Spo0A, a master regulator. Conclusions/Significance: Collectively, these results provide additional support for the importance of Ssps, particularly the Ssp4 variant with Asp at residue 36, for the extreme spore resistance phenotype that likely contributes to C. perfringens type A food poisoning transmission. © 2009 Li et al

    Clostridium difficile spores and its relevance in the persistence and transmission of the infection

    Get PDF
    Indexación: Web of Science; Scielo.Clostridium difficile es un patógeno anaerobio, formador de esporas y el agente etiológico más importante de las diarreas asociadas a antimicrobianos, tanto nosocomiales como adquiridas en la comunidad. Las infecciones asociadas a C. difficile poseen una elevada tasa de morbilidad en países desarrollados y en vías de desarrollo. Los dos factores de virulencia principales son TcdA y TcdB, toxinas que causan la remodelación del citoesqueleto lo cual desencadena los síntomas clínicos asociados a esta enfermedad infecciosa. A pesar que las esporas de C. difficile son el principal vehículo de infección, persistencia en el hospedero y de transmisión, pocos estudios se han enfocado sobre este clave aspecto. Es altamente probable que la espora juegue roles esenciales en los episodios de recurrencia y de transmisión horizontal de la infección por este microorganismo. Estudios recientes han revelado características únicas de las esporas de C. difficile que las hacen capaces de ser altamente transmisibles y persistir dentro del hospedero. Más aún, algunas de estas propiedades están relacionadas con la resistencia de sus esporas a los desinfectantes más comúnmente usados en los recintos hospitalarios. La presente revisión resume los conocimientos más relevantes en la biología de las esporas de C. difficile, con un énfasis en aquellos aspectos con implicancias clínicas, incluido el control de infecciones en el ambiente hospitalario.C. difficile is an anaerobic spore former pathogen and the most important etiologic agent of nosocomial and community acquired antibiotics associated diarrheas. C. difficile infections (CDI) are responsible for an elevated rate of morbidity in developed and developing countries. Although the major virulence factors responsible for clinical symptoms of CDI are the two toxins TcdA and TcdB, C. difficile spores are the main vehicle of infection, persistence and transmission of CDI. Recent work has unrevealed unique properties of C. difficile spores that make them remarkable morphotypes of persistence and transmission in the host, including their resistance to antibiotics, the host immune response and disinfectants. The present review summarizes relevant aspects of C. difficile spore biology that have major implications from a clinical and medical perspective.http://ref.scielo.org/3xfbk

    Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa

    Get PDF
    Indexación: Web of Science.Clostridium difficile is the causative agent of the most frequently reported nosocomial diarrhea worldwide. The high incidence of recurrent infection is the main clinical challenge of C. difficile infections (CBI). Formation of C. difficile spores of the epidemic strain R20291 has been shown to be essential for recurrent infection and transmission of the disease in a mouse model. However, the underlying mechanisms of how these spores persist in the colonic environment remains unclear. In this work, we characterized the adherence properties of epidemic R20291 spores to components of the intestinal mucosa, and we assessed the role of the exosporium integrity in the adherence properties by using cdeC mutant spores with a defective exosporium layer. Our results showed that spores and vegetative cells of the epidemic R20291 strain adhered at high levels to monolayers of Caco-2 cells and mucin. Transmission electron micrographs of Caco-2 cells demonstrated that the hair-like projections on the surface of R20291 spores are in close proximity with the plasma membrane and microvilli of undifferentiated and differentiated monolayers of Caco-2 cells. Competitive-binding assay in differentiated Caco-2 cells suggests that spore-adherence is mediated by specific binding sites. By using spores of a cdeC mutant we demonstrated that the integrity of the exosporium layer determines the affinity of adherence of C. difficile spores to Caco-2 cells and mucin. Binding of fibronectin and vitronectin to the spore surface was concentration-dependent, and depending on the concentration, spore-adherence to Caco-2 cells was enhanced. In the presence of an aberrantly-assembled exosporium (cdeC spores), binding of fibronectin, but not vitronectin, was increased. Notably, independent of the exosporium integrity, only a fraction of the spores had fibronectin and vitronectin molecules binding to their surface. Collectively, these results demonstrate that the integrity of the exosporium layer of strain R20291 contributes to selective spore adherence to components of the intestinal mucosa.http://journal.frontiersin.org/article/10.3389/fcimb.2016.00099/ful
    corecore