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Abstract

Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile
virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly
developed technologies and animal models allow these processes to be studied in detail. One such advance is the
generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing
the genetic requirements for colonization and infection. While important, it is equally as important in understanding what
differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-
mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are
not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that
the three muricholic acids (a-muricholic acid, b-muricholic acid and v-muricholic acid) inhibit C. difficile spore germination
and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice
and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.
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Introduction

Clostridium difficile is an anaerobic, spore-forming bacteria that is

the leading cause of antibiotic-associated diarrhea. As the costs

associated with treatment continue to rise [1,2], much research has

focused on understanding the normal course of infection within

humans. One of the challenges in the study of C. difficile infections

has been developing suitable animal models that adequately

reproduce symptoms as presented in humans. Gnotobiotic

neonatal piglets, rats, and germ-free mice have all been used to

varying degrees of success [3,4,5,6]. The most widely used model

has been the Syrian hamster model of C. difficile disease

[7,8,9,10,11]. Antibiotic-treated hamsters are very sensitive to C.

difficile infection with lethal disease presenting approximately 3

days after inoculation by C. difficile spores. While the hamster

represents an excellent model of acute disease, hamsters typically

succumb too quickly to disease to measure factors influencing

colonization, representing only the full presentation of disease and

not less severe symptoms when exposed to epidemic strains [12].

Such rapid progression of the disease and high mortality can also

pose problems when attempting to study relapsing infection.

Several mouse models of infection have been developed

[5,13,14,15,16,17]. Some of these models use heavy doses of

antibiotics (e.g. kanamycin, gentamicin, colistin, metronidazole

and vancomycin followed by clindamycin or cefoperazone

followed by clindamycin) and then inoculation with C. difficile

spores or vegetative cells [14,15]. These antibiotic regimens

sensitize mice so that they respond to infection in a dose dependent

manner (increasing disease severity with increasing number of

dosed cells or spores). Further, antibiotic-treated mice can relapse

after a course of antibiotic treatment, to cure the primary

infection, and will express some resistance to reinfection when

allowed to fully recover from disease [14]. These are important

components of an animal model because relapse in humans

represents one of the main challenges to current treatment

regimens [18,19].

Because the mouse model is beginning to be a more widely

accepted method of testing potential preventative therapies [20]

and the genetic requirements for infection [13,21,22], it is

important to understand what potential variability exists between

the mouse model of infection and humans. One potential source of

variability is the natural differences between mouse and human

microbiota. The use of an antibiotic cocktail before infection is an

attempt to impact these other microbes [23,24]. Another

important source of variability is the differences in the natural

fecal bile acid composition between mice [25,26] and humans [27]

(and hamsters [28,29,30]).

In humans, bile acids are synthesized in the liver as either cholic

acid (3a, 7a, 12a-trihydroxy-5b-cholanic acid) or chenodeoxy-

cholic acid [3a, 7a,-dihydroxy-5b-cholanic acid (CDCA)] [27].

These bile acids are then conjugated with either taurine or glycine

and, later, further modified by certain members of the colonic

microbiota [27]. Previous work has shown that colony formation

by C. difficile spores on rich medium occurs after exposure to cholic

acid derivatives [31,32]. Subsequent work has shown that all

cholic acid derivatives and some amino acids, commonly glycine,

can stimulate the initiation of spore germination while CDCA-

derivatives are competitive inhibitors of cholic acid-mediated

germination [31,33,34,35,36]. In mice and rats, CDCA is a
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component of bile, but there are two additional bile acids, a-
muricholic acid (AMA) and b-muricholic acid (BMA), that are not

present in humans [37]. A third muricholic acid, v-muricholic

acid (OMA), is an epimer of BMA and is produced by the normal

microbiota. The effects of these compounds on C. difficile spore

germination are unknown.

Germination by C. difficile spores must be the first step in

colonization [20,38]. The toxins necessary for disease are not

found within the spore or deposited on the outer layers during

spore formation [39]. To generate active infection in the hamster

model of C. difficile disease, approximately 100 spores will result in

a lethal infection (LD100) while in the mouse model, significantly

more spores are required to generate lethal disease (,108) [20].

Interestingly, when vegetative cells are used to inoculate antibiotic-

treated mice, fewer cells are needed (,105), suggesting the

efficiency of in vivo germination by C. difficile spores may be

affected differently in the mouse than in the hamster [14,20,40].

Here, we investigate how muricholic acids affect C. difficile spore

germination and growth using two C. difficile isolates; UK1– an

epidemic ribotype 027 isolate [34,41] and M68– a ribotype 017

that readily colonizes mice [13,17]. We find that all three

muricholic acids can inhibit C. difficile spore germination with

apparent affinities similar to what is observed for CDCA and that

these compounds are also growth inhibitory.

Materials and Methods

C. difficile Growth Conditions
C. difficile strain UK1 [34,38,41,42] and strain M68 [13,43]

were grown in BHIS medium (Brain Heart Infusion supplemented

with 5 g/L yeast extract and 0.1% L-cysteine) at 37uC in an

anaerobic environment (85% nitrogen, 10% hydrogen and 5%

carbon dioxide).

C. difficile Spore Preparations
Spores of C. difficile UK1 and C. difficile M68 were prepared as

described previously [34,42,43]. Briefly, C. difficile UK1 or M68

were streaked on BHIS agar medium and incubated for 4 days

under anaerobic conditions at 37uC. Plates were then removed

from the chamber and cell matter was scraped and diluted into

1 mL of water. Tubes were then left to incubate overnight at 4uC
to aid in the release of spores from the mother cell. The next day,

cell matter was resuspended and centrifuged at 14,0006g for 1

minute. Tubes were decanted and resuspended in 1 mL of water.

After 5 washes, the pellets from several tubes were combined in

2 mL water and layered on top of 8 mL of 50% sucrose. Spores

were separated from vegetative cells and cell debris by centrifu-

gation for 20 minutes at 4,0006g. All liquid was then removed

from the tube. The pellet, containing the purified spores, was

resuspended in 1 mL of water. The purified spores were washed in

water as described above. When examined by phase-contrast

microscopy, the remaining pellet appeared to be composed

.99.9% phase-bright spores.

Germination of C. difficile Spores
Purified spores were heat activated for 30 min at 65uC and

placed on ice, as described previously [33,34,42,44,45]. Heat-

activated spores were then diluted into 990 mL BHIS supplement-

ed with 0 mM, 2 mM, 5 mM, 10 mM, 20 mM or 50 mM

taurocholate. When testing muricholic acids or CDCA, bile

compound was added to tubes before the addition of spores. The

initiation of germination was followed by monitoring absorbance

at 600 nm. The ratio of the A600 at time6 (Tx) to the A600 at time

zero (T0) was plotted against time. Germination rates, and

apparent affinities, were determined using the slopes of the linear

portions of the germination plots, as described previously

[34,42,45]. Data are reported as the averages from three

independent experiments with one standard deviation from the

mean. For clarity, only every fourth data point is plotted. CDCA,

AMA, BMA and OMA were dissolved at 100 mM in 100%

ethanol. AMA, BMA and OMA were purchased from Steraloids,

Inc (Newport, RI).

Minimum Inhibitory Concentration
C. difficile, from an actively growing plate, was grown overnight

in 5 mL liquid BHIS under anaerobic conditions. The next day,

25 mL BHIS medium was inoculated with 0.25 mL of the

overnight C. difficile culture and then incubated until an OD600

of 0.45. One hundred twenty five-microliters of this culture then

added to 50 mL of ice cold reduced BHIS and kept on ice.

Microtiter plates containing BHIS and serially diluted compound

were previously prepared and placed in anaerobic chamber to

reduce. 10 mL of chilled cells were then added to wells and

incubated for 24 hours at 37uC. After 24 hours, plates were

removed from the anaerobic chamber and growth measured using

a BioRad Xmark plate reader.

Statistical significance. Experiments were performed in

triplicate and data represent the average of the three independent

experiments. Statistical significance between UK1 and M68 was

determined using the Student’s T-test.

Results

Structures of Muricholic Acids
Mice synthesize three bile acids not found in humans. Two of

these compounds are synthesized directly by the mouse; AMA (3a,
6b, 7a-trihydroxy-5b-cholanic acid) and BMA (3a, 6b, 7b-
trihydroxy-5b-cholanic acid) (Figure 1) [25,26]. The third

muricholic acid, OMA (3a, 6a, 7b-trihydroxy-5b-cholanic acid)

is produced by oxidation of the 6b-hydroxyl of b-muricholic acid

followed by reduction of the compound to a 6a-hydroxyl group
(Figure 1) by members of the mouse colonic microbiota [46,47].

AMA and BMA contain a 6b-hydroxyl group while OMA

contains a 6a-hydroxyl group (Figure 1). The conformational

effect of this 6-hydroxyl group is untested on C. difficile spore

germination because bile acids normally found in the human gut

lack the 6-hydroxyl group. As shown in Figure 1, all three

muricholic acids lack a 12a-hydroxyl group, suggesting they might

act as inhibitors of C. difficile spore germination [34].

Muricholic Acids Inhibit C. difficile Spore Germination
To understand how these compounds affect germination, C.

difficile spores were assayed for germination in the presence or

absence of muricholic acids. As positive and negative controls,

respectively, the initiation of spore germination was followed in the

presence of taurocholic acid, a known C. difficile spore germinant

[31,32] or in the presence of taurocholic acid and CDCA, a known

inhibitor of C. difficile spore germination [33,34].

Purified C. difficile UK1 spores were suspended in BHIS medium

and different taurocholic acid concentrations (Figure 2A). As

described previously, the rate of germination increased with

increasing taurocholic acid concentration [34,42,45]. The addition

of 1 mM CDCA had an inhibitory effect on germination

(Figure 2B). The addition of 1 mM AMA resulted in a clear

reduction of the ability of C. difficile spores to germinate in response

to TA (Figure 2C). The effect of this inhibition of germination was

quantified by applying Michaelis-Menten kinetics to the germina-

tion plots to generate apparent Km values. While not traditional

Inhibiting C. difficile Spore Germination
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enzyme kinetics, these types of analyses have aided in the

identification of the requirements for spore germination and for

novel inhibitors of spore germination [34,36,42,44,45,48,49,50].

Analysis of the Lineweaver-Burk plot of C. difficile UK1 spore

germination in taurocholic acid alone (Figure 2D) yielded an

apparent Km value similar to what has been previously reported

(Table 1) [34,42]. When analyzing germination by C. difficile UK1

spores in the presence of different muricholic acids, it was

immediately obvious that these compounds were germination-

inhibitory. From the germination plots, we determined the rates of

germination and used this data to generate apparent inhibitory

constants (Ki) for each inhibitor tested (Table 1). Comparing the

muricholic acids to CDCA, BMA and OMA yielded apparent

inhibition constants similar to CDCA while AMA proved to be

least efficient at inhibiting germination (Table 1). The difference

between CDCA and AMA can be observed by comparing the

ability of C. difficile spores to germinate in BHIS medium

supplemented with 2 mM TA. Addition of 1 mM CDCA had a

greater effect than did the addition of 1 mM AMA.

Germination of C. difficile M68 in medium with taurocholic acid

was similar to C. difficile UK1. C. difficileM68 rapidly germinated in

medium supplemented with taurocholic acid (Figure 3A) and was

inhibited when 1 mM AMA was added to the germination

solution (Figure 3B). However, by analyzing the kinetics of C.

difficile M68 spore germination, we observed that the data from

this strain produced non-linear Lineweaver-Burk plots (Figure 3C),

a phenomenon observed for some other C. difficile strains [45]. The

Hill plot (Figure 3D) was used to generate the apparent Km. This

value was then used to determine the apparent Ki under each

condition tested. When C. difficile M68 spores were germinated in

the presence of CDCA, germination was strongly inhibited

(Table 1). The inhibition of germination by BMA was similar to

the inhibition observed for C. difficile UK1 and, again, AMA was

the least efficient at inhibiting spore germination (Table 1). OMA

was a more potent inhibitor of C. difficile M68 spore germination

than C. difficile UK1 spore germination (p-value ,0.05).

Minimum Inhibitory Concentration of Muricholic Bile
Acids
Previously, we demonstrated that CDCA and deoxycholic acid

inhibited C. difficile growth [31]. In antibiotic-treated mice, the

levels of deoxycholic acid are likely to be very low because it is a

product of the 7a-dehydroxylation of cholic acid by the normal

microbiota [27]. However, cholic acid, CDCA, AMA and BMA

will be present and could affect C. difficile growth. To quantify the

effects of these compounds on C. difficile growth, we determined

the MIC. Serial, 2-fold dilutions of bile acids in growth media were

used determine the MIC for each bile acid (Table 2). C. difficile

strain UK1 did not grow in the presence of CDCA or AMA or

BMA, at a concentration of 1 mM or above. OMA was less toxic

to the strain; a concentration of 2 mM was necessary to inhibit

growth. In stark contrast, the MIC of cholic acid for C. difficile

UK1 was 10 mM, a concentration not found in the colon. We

observed slightly different results when analyzing the MIC of these

bile acids for C. difficile M68 growth. This strain was more resistant

to the toxic effects of AMA and BMA while equally as sensitive to

CDCA, cholic acid and deoxycholic acid (Table 2). BMA is more

prevalent in the gut of rats and mice than is CDCA [25,51],

suggesting that a strain which is more resistant to the toxic effects

of BMA (e.g. C. difficileM68) might be able to better colonize mice.

Discussion

In the laboratory setting, certain combinations of bile acids and

amino acids are the most effective conditions for measuring C.

difficile spore germination [31,32,35]. While cholic acid derivatives

can stimulate C. difficile spore germination [31], CDCA-derivatives

inhibit cholic acid-mediate germination by C. difficile spores

[33,34]. Compared to humans, mice produce a low level of

CDCA but produce other bile acids (AMA and BMA), in greater

abundance. These muricholic acids may have an impact on how

C. difficile spores germinate in vivo. Here, we found that AMA,

BMA and OMA (a microbial product) inhibit taurocholic acid-

mediated spore germination with BMA and OMA being the most

potent germination-inhibiting muricholic acids (Table 1). These

results are consistent with our previous work that has shown the

12-hydroxyl group to be an important determinant of whether a

compound functions as a germinant or inhibitor of germination

[31,33,34]. One difference observed between the germination of

C. difficile UK1 spores and C. difficileM68 spores was the non-linear

double-reciprocal plot for germination by C. difficile M68 spores.

As seen in other strains, C. difficile M68 may bind taurocholic acid

cooperatively [45]. With the recent identification of the molecular

target of bile acids on the C. difficile spore, this hypothesis could be

tested outright [38].

Total bile acid levels in the distal small intestine have been

estimated to be between 1 mM to 2 mM in concentration [52].

This is in the range of the concentrations which inhibit C. difficile

growth for the individual bile acids tested (Table 2); variations in

pH may affect the toxicity of each bile acid [53]. Comparing these

concentrations to the apparent Ki values determined for AMA and

BMA, they are approximately 36 to 86 greater, respectively

(Table 1). That is, in an antibiotic-treated mouse, the levels of

AMA and BMA might prevent efficient C. difficile spore

germination, possibly explaining why such greater numbers of

spores, compared to vegetative cells, are required to colonize a

Figure 1. Structures of common muricholic acids. The primary
bile acids (cholic acid, chenodeoxycholic acid, a-muricholic acid and b-
muricholic acid) are listed. Deoxycholic acid and v-muricholic acid are
secondary bile acids and are products of the normal microbiota.
doi:10.1371/journal.pone.0073653.g001
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mouse [20]. It is also important to note that most mice used as a

model for C. difficile infection would likely contain reduced levels of

OMA because its formation requires the presence of mouse gut

microbes [46,47] which are likely ‘collateral damage’ during a

routine course of broad-spectrum antibiotics.

Antibiotics can affect host functions. That is, treating mice with

antibiotics could lead to alterations in the bile acid spectrum and

increase or decrease the availability of activators or inhibitors of C.

difficile spore germination. Treatment of mice with antibiotics has

been shown to increase hepatic bile acid synthesis [54].

Specifically, the authors identified that small intestine, lumenal

concentrations of taurocholic acid, tauro-b-muricholic acid and

taurochenodeoxycholic acid were more abundant in antibiotic-

treated C57/BL6 mice than in vehicle-only controls [54]; the

authors did not measure the levels of AMA. Thus, upon antibiotic

exposure, an increase in the abundance of germination-inhibiting

bile acids could contribute to an environment which is more

resistant to C. difficile spore germination.

Some C. difficile strains have been shown to stably colonize mice

and enter a ‘contagious’ state, where disease is limited but spore

shedding is maintained, while other strains are cleared by the host

[13,17]. The mechanisms by which some C. difficile strains are able

to stably colonize a host while others do not, is unclear. While the

answer is likely to be multifactorial, an increased resistance to bile

Figure 2. a-muricholic acid inhibits germination by C. difficile UK1 spores. (A) Germination of Clostridium difficile UK1 spores in complex
medium supplemented with taurocholic acid (TA) or (B) medium supplemented with TA and 1 mM CDCA or (C) medium supplemented with TA and
1 mM a-muricholic acid. N 0 mM TA, & 2 mM TA, m 5 mM TA, . 10 mM TA,¤ 20 mM TA or # 50 mM TA. (D) The inverse rate (1/v [sec/OD600]),
versus the inverse taurocholate concentration (1/S [mM21], was plotted. Apparent Km values for TA alone (N) and in the presence of a-muricholic acid
(&) were determined from the linear best fit.
doi:10.1371/journal.pone.0073653.g002

Table 1. Bile acid effects on C. difficile spore germination.

Strain UK1 M68

Km (mM) Km (mM)

Taurocholic Acid 3.260.5 3.560.5

Ki (mM) Ki (mM)

Chenodeoxycholic Acid 0.2260.07 0.1260.02

a-Muricholic Acid 0.6260.09 0.5960.05

b-Muricholic Acid 0.2760.12 0.2660.02

v-Muricholic Acid 0.2960.03 0.2060.01*

Ki = [inhibitor]/[(Km,TA with inhibitor)/((Km,TA without inhibitor) 21)].
*p,0.05.
doi:10.1371/journal.pone.0073653.t001
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acids could contribute to a strain’s ability to persist within a host.

C. difficile M68 is a strain that can enter a supershedder state after

the cessation of antibiotic treatment [13]. We find C. difficile M68

to be more resistant to bile acid toxicity than is C. difficile UK1 and

this increased resistance may aid C. difficile M68 in maintaining

active colonization.

Muricholic acids might provide a level of protection to mice

from C. difficile infection that is not seen in other models of C.

difficile disease. While our results suggest that particular bile acids

may inhibit C. difficile spore germination or vegetative growth

in vitro, it is unclear if AMA or BMA could substitute for each other

in preventing in vivo spore germination. Clearly, BMA is a more

potent inhibitor of in vitro spore germination than is AMA. But,

given the vast repertoire of mouse lines and genetic approaches,

testing the ability of C. difficile to colonize mice that have had

introduced mutations into specific steps in the bile acid/muricholic

acid synthesis pathway would allow the determination of which

bile acids are relevant for stimulating or inhibiting in vivo spore

germination and vegetative growth.
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